{"title":"Arterial Spin Labeling for Pediatric Central Nervous System Diseases: Techniques and Clinical Applications.","authors":"Mika Kitajima, Hiroyuki Uetani","doi":"10.2463/mrms.rev.2021-0118","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL) are techniques used to evaluate brain perfusion using MRI. DSC requires dynamic image acquisition with a rapid administration of gadolinium-based contrast agent. In contrast, ASL obtains brain perfusion information using magnetically labeled blood water as an endogenous tracer. For the evaluation of brain perfusion in pediatric neurological diseases, ASL has a significant advantage compared to DSC, CT, and single-photon emission CT/positron emission tomography because of the lack of radiation exposure and contrast agent administration. However, in ASL, optimization of several parameters, including the type of labeling, image acquisition, background suppression, and postlabeling delay, is required, because they have a significant effect on the quantification of cerebral blood flow (CBF).In this article, we first review recent technical developments of ASL and age-dependent physiological characteristics in pediatric brain perfusion. We then review the clinical implementation of ASL in pediatric neurological diseases, including vascular diseases, brain tumors, acute encephalopathy with biphasic seizure and late reduced diffusion (AESD), and migraine. In moyamoya disease, ASL can be used for brain perfusion and vessel assessment in pre- and post-treatment. In arteriovenous malformations, ASL is sensitive to detect small degrees of shunt. Furthermore, in vascular diseases, the implementation of ASL-based time-resolved MR angiography is described. In neoplasms, ASL-derived CBF has a high diagnostic accuracy for differentiation between low- and high-grade pediatric brain tumors. In AESD and migraine, ASL may allow for accurate early diagnosis and provide pathophysiological information.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"22 1","pages":"27-43"},"PeriodicalIF":4.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e5/e5/mrms-22-27.PMC9849418.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2463/mrms.rev.2021-0118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL) are techniques used to evaluate brain perfusion using MRI. DSC requires dynamic image acquisition with a rapid administration of gadolinium-based contrast agent. In contrast, ASL obtains brain perfusion information using magnetically labeled blood water as an endogenous tracer. For the evaluation of brain perfusion in pediatric neurological diseases, ASL has a significant advantage compared to DSC, CT, and single-photon emission CT/positron emission tomography because of the lack of radiation exposure and contrast agent administration. However, in ASL, optimization of several parameters, including the type of labeling, image acquisition, background suppression, and postlabeling delay, is required, because they have a significant effect on the quantification of cerebral blood flow (CBF).In this article, we first review recent technical developments of ASL and age-dependent physiological characteristics in pediatric brain perfusion. We then review the clinical implementation of ASL in pediatric neurological diseases, including vascular diseases, brain tumors, acute encephalopathy with biphasic seizure and late reduced diffusion (AESD), and migraine. In moyamoya disease, ASL can be used for brain perfusion and vessel assessment in pre- and post-treatment. In arteriovenous malformations, ASL is sensitive to detect small degrees of shunt. Furthermore, in vascular diseases, the implementation of ASL-based time-resolved MR angiography is described. In neoplasms, ASL-derived CBF has a high diagnostic accuracy for differentiation between low- and high-grade pediatric brain tumors. In AESD and migraine, ASL may allow for accurate early diagnosis and provide pathophysiological information.