Fluid shear stress induces cell migration via RhoA-YAP1-autophagy pathway in liver cancer stem cells.

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Zhiping Yan, Danfeng Guo, Ruolin Tao, Xiao Yu, Jiacheng Zhang, Yuting He, Jiakai Zhang, Jie Li, Shuijun Zhang, Wenzhi Guo
{"title":"Fluid shear stress induces cell migration via RhoA-YAP1-autophagy pathway in liver cancer stem cells.","authors":"Zhiping Yan,&nbsp;Danfeng Guo,&nbsp;Ruolin Tao,&nbsp;Xiao Yu,&nbsp;Jiacheng Zhang,&nbsp;Yuting He,&nbsp;Jiakai Zhang,&nbsp;Jie Li,&nbsp;Shuijun Zhang,&nbsp;Wenzhi Guo","doi":"10.1080/19336918.2022.2103925","DOIUrl":null,"url":null,"abstract":"<p><p>Fluid shear stress (FSS) regulates the metastasis of hepatocellular carcinoma (HCC), but the role of the RhoA-YAP1-autophagy pathway in HCC remains unclear. Due to the core role of liver cancer stem cells (LCSCs) in HCC metastasis and recurrence, we explored the RhoA-YAP1-autophagy pathway in LCSCs under FSS. Our results indicate that LCSCs have stronger proliferation and cell spheroidization abilities. FSS (1 dyn/cm<sup>2</sup>) upregulated the migration of LCSCs and autophagy protein markers, inducing LC3B aggregation and autophagosome formation in LCSCs. Mechanistically, FSS promoted YAP1 dephosphorylation and transport to the nucleus, which is mediated by RhoA, inducing autophagy. Finally, inhibition of autophagy suppressed cell migration in LCSCs under FSS. In conclusion, FSS promoted the migration of LCSCs via the RhoA-YAP1-autophagy pathway.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"16 1","pages":"94-106"},"PeriodicalIF":3.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/92/d5/KCAM_16_2103925.PMC9331214.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Adhesion & Migration","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336918.2022.2103925","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

Fluid shear stress (FSS) regulates the metastasis of hepatocellular carcinoma (HCC), but the role of the RhoA-YAP1-autophagy pathway in HCC remains unclear. Due to the core role of liver cancer stem cells (LCSCs) in HCC metastasis and recurrence, we explored the RhoA-YAP1-autophagy pathway in LCSCs under FSS. Our results indicate that LCSCs have stronger proliferation and cell spheroidization abilities. FSS (1 dyn/cm2) upregulated the migration of LCSCs and autophagy protein markers, inducing LC3B aggregation and autophagosome formation in LCSCs. Mechanistically, FSS promoted YAP1 dephosphorylation and transport to the nucleus, which is mediated by RhoA, inducing autophagy. Finally, inhibition of autophagy suppressed cell migration in LCSCs under FSS. In conclusion, FSS promoted the migration of LCSCs via the RhoA-YAP1-autophagy pathway.

Abstract Image

Abstract Image

Abstract Image

流体剪切应力通过rhoa - yap1自噬途径诱导肝癌干细胞迁移。
流体剪切应力(FSS)调节肝细胞癌(HCC)的转移,但rhoa - yap1自噬通路在HCC中的作用尚不清楚。鉴于肝癌干细胞(liver cancer stem cells, LCSCs)在HCC转移和复发中的核心作用,我们在FSS下探索了LCSCs中rhoa - yap1自噬通路。结果表明,LCSCs具有较强的增殖和细胞球化能力。FSS (1 dyn/cm2)上调LCSCs的迁移和自噬蛋白标志物,诱导LC3B聚集和自噬小体形成。机制上,FSS通过RhoA介导,促进YAP1去磷酸化并转运至细胞核,诱导自噬。最后,自噬抑制抑制了FSS下LCSCs的细胞迁移。综上所述,FSS通过rhoa - yap1自噬途径促进LCSCs的迁移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
0.00%
发文量
7
审稿时长
53 weeks
期刊介绍: Cell Adhesion & Migration is a multi-disciplinary, peer reviewed open access journal that focuses on the biological or pathological implications of cell-cell and cell-microenvironment interactions. The main focus of this journal is fundamental science. The journal strives to serve a broad readership by regularly publishing review articles covering specific disciplines within the field, and by publishing focused issues that provide an overview on specific topics of interest within the field. Cell Adhesion & Migration publishes relevant and timely original research, as well as authoritative overviews, commentaries, and perspectives, providing context for the work presented in Cell Adhesion & Migration and for key results published elsewhere. Original research papers may cover all topics important in the field of cell-cell and cell-matrix interactions. Cell Adhesion & Migration also publishes articles related to cell biomechanics, biomaterial, and development of related imaging technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信