The evolutionary and functional divergence of the Atg8 autophagy protein superfamily.

IF 1.8 4区 生物学 Q3 BIOLOGY
Virginia B Varga, Fanni Keresztes, Tímea Sigmond, Tibor Vellai, Tibor Kovács
{"title":"The evolutionary and functional divergence of the Atg8 autophagy protein superfamily.","authors":"Virginia B Varga,&nbsp;Fanni Keresztes,&nbsp;Tímea Sigmond,&nbsp;Tibor Vellai,&nbsp;Tibor Kovács","doi":"10.1007/s42977-022-00123-6","DOIUrl":null,"url":null,"abstract":"<p><p>Autophagy is a highly conserved self-degradation process of eukaryotic cells which is required for the effective elimination of damaged and unnecessary cytosolic constituents. Defects in the process can cause the intracellular accumulation of such damages, thereby leading to the senescence and subsequent loss of the affected cell. Defective autophagy hence is implicated in the development of various degenerative processes, including cancer, neurodegenerative diseases, diabetes, tissue atrophy and fibrosis, and immune deficiency, as well as in accelerated aging. The autophagic process is mediated by numerous autophagy-related (ATG) proteins, among which the ATG8/LC3/GABARAP (Microtubule-associated protein 1A/1B-light chain 3/Gammaaminobutyric acid receptor-associated protein) superfamily has a pivotal role in the formation and maturation of autophagosome, a key (macro) autophagic structure (the autophagosome sequesters parts of the cytoplasm which are destined for breakdown). While in the unicellular yeast there is only a single ATG8 protein, metazoan systems usually contain more ATG8 paralogs. ATG8 paralogs generally display tissue-specific expression patterns and their functions are not strictly restricted to autophagy. For example, GABARAP proteins also play a role in intracellular vesicle transport, and, in addition to autophagosome formation, ATG8 also functions in selective autophagy. In this review, we summarize the functional diversity of ATG8/LC3/GABARAP proteins, using tractable genetic models applied in autophagy research.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia futura","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42977-022-00123-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

Autophagy is a highly conserved self-degradation process of eukaryotic cells which is required for the effective elimination of damaged and unnecessary cytosolic constituents. Defects in the process can cause the intracellular accumulation of such damages, thereby leading to the senescence and subsequent loss of the affected cell. Defective autophagy hence is implicated in the development of various degenerative processes, including cancer, neurodegenerative diseases, diabetes, tissue atrophy and fibrosis, and immune deficiency, as well as in accelerated aging. The autophagic process is mediated by numerous autophagy-related (ATG) proteins, among which the ATG8/LC3/GABARAP (Microtubule-associated protein 1A/1B-light chain 3/Gammaaminobutyric acid receptor-associated protein) superfamily has a pivotal role in the formation and maturation of autophagosome, a key (macro) autophagic structure (the autophagosome sequesters parts of the cytoplasm which are destined for breakdown). While in the unicellular yeast there is only a single ATG8 protein, metazoan systems usually contain more ATG8 paralogs. ATG8 paralogs generally display tissue-specific expression patterns and their functions are not strictly restricted to autophagy. For example, GABARAP proteins also play a role in intracellular vesicle transport, and, in addition to autophagosome formation, ATG8 also functions in selective autophagy. In this review, we summarize the functional diversity of ATG8/LC3/GABARAP proteins, using tractable genetic models applied in autophagy research.

Atg8自噬蛋白超家族的进化和功能分化。
自噬是真核细胞高度保守的自我降解过程,它是有效消除受损和不必要的细胞质成分所必需的。这一过程中的缺陷会导致这些损伤在细胞内积累,从而导致受影响细胞的衰老和随后的损失。因此,有缺陷的自噬与各种退行性过程的发展有关,包括癌症、神经退行性疾病、糖尿病、组织萎缩和纤维化、免疫缺陷,以及加速衰老。自噬过程是由许多自噬相关(ATG)蛋白介导的,其中ATG8/LC3/GABARAP(微管相关蛋白1A/ 1b -轻链3/ γ氨基丁酸受体相关蛋白)超家族在自噬体的形成和成熟中起关键作用,自噬体是一个关键的(宏观)自噬结构(自噬体将细胞质中被分解的部分隔离)。虽然在单细胞酵母中只有一个ATG8蛋白,但后生动物系统通常含有更多的ATG8类似物。ATG8类似物通常显示组织特异性表达模式,其功能并不严格限于自噬。例如,GABARAP蛋白也在细胞内囊泡运输中发挥作用,除了自噬体的形成外,ATG8蛋白还在选择性自噬中发挥作用。本文综述了ATG8/LC3/GABARAP蛋白的功能多样性,并利用可处理的遗传模型应用于自噬研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biologia futura
Biologia futura Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.50
自引率
0.00%
发文量
27
期刊介绍: How can the scientific knowledge we possess now influence that future? That is, the FUTURE of Earth and life − of humankind. Can we make choices in the present to change our future? How can 21st century biological research ask proper scientific questions and find solid answers? Addressing these questions is the main goal of Biologia Futura (formerly Acta Biologica Hungarica). In keeping with the name, the new mission is to focus on areas of biology where major advances are to be expected, areas of biology with strong inter-disciplinary connection and to provide new avenues for future research in biology. Biologia Futura aims to publish articles from all fields of biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信