{"title":"Quantitative evaluation of the drivers of species richness in a Mediterranean ecosystem (Cape, South Africa).","authors":"Michael D Cramer, G Anthony Verboom","doi":"10.1093/aob/mcad134","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Mediterranean ecosystems have a high vascular plant species richness (SR) relative to their surface area. This SR, representing the balance between speciation and extinction, has been attributed to multiple mechanisms that result in both high rates of speciation and/or low rates of extinction. An abiding question is, however, what is special about Mediterranean ecosystems that enables this high SR? Apart from the long-term climatic stability of the region, SR has also been related to resource availability, the many individuals hypothesis, resource spatial heterogeneity, temporal heterogeneity and biotic feedbacks.</p><p><strong>Methods: </strong>Spatial patterns of species richness were related to climatic, edaphic and biotic variables and to spatial variability within the Greater Cape Floristic Region (GCFR) of South Africa. Boosted regression tree models were used to explore the strength of relationships between SR and environmental predictors related to each hypothesized mechanism.</p><p><strong>Key results: </strong>Water availability (i.e. precipitation) was a stronger predictor of SR than potential evapotranspiration or temperature. Scarcity of nutrients was also related to SR. There was no indication that SR was related to the density of individuals and only temporal heterogeneity induced by fire was related to SR. Spatial heterogeneities of climatic, edaphic and biotic variables were strongly associated with SR. Biotic interactions remain difficult to assess, although we have some evidence for a putative role in regulating SR.</p><p><strong>Conclusions: </strong>While the lack of ecosystem-resetting disturbances (e.g. glaciation) is undoubtedly a key requirement for high species accumulation, predictably, no one explanation holds the key to understanding SR. In the GCFR high SR is the product of a combination of adequate water, nutrient scarcity, spatial and temporal heterogeneity, and possibly biotic feedbacks.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":"801-818"},"PeriodicalIF":3.6000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082525/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aob/mcad134","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims: Mediterranean ecosystems have a high vascular plant species richness (SR) relative to their surface area. This SR, representing the balance between speciation and extinction, has been attributed to multiple mechanisms that result in both high rates of speciation and/or low rates of extinction. An abiding question is, however, what is special about Mediterranean ecosystems that enables this high SR? Apart from the long-term climatic stability of the region, SR has also been related to resource availability, the many individuals hypothesis, resource spatial heterogeneity, temporal heterogeneity and biotic feedbacks.
Methods: Spatial patterns of species richness were related to climatic, edaphic and biotic variables and to spatial variability within the Greater Cape Floristic Region (GCFR) of South Africa. Boosted regression tree models were used to explore the strength of relationships between SR and environmental predictors related to each hypothesized mechanism.
Key results: Water availability (i.e. precipitation) was a stronger predictor of SR than potential evapotranspiration or temperature. Scarcity of nutrients was also related to SR. There was no indication that SR was related to the density of individuals and only temporal heterogeneity induced by fire was related to SR. Spatial heterogeneities of climatic, edaphic and biotic variables were strongly associated with SR. Biotic interactions remain difficult to assess, although we have some evidence for a putative role in regulating SR.
Conclusions: While the lack of ecosystem-resetting disturbances (e.g. glaciation) is undoubtedly a key requirement for high species accumulation, predictably, no one explanation holds the key to understanding SR. In the GCFR high SR is the product of a combination of adequate water, nutrient scarcity, spatial and temporal heterogeneity, and possibly biotic feedbacks.
期刊介绍:
Annals of Botany is an international plant science journal publishing novel and rigorous research in all areas of plant science. It is published monthly in both electronic and printed forms with at least two extra issues each year that focus on a particular theme in plant biology. The Journal is managed by the Annals of Botany Company, a not-for-profit educational charity established to promote plant science worldwide.
The Journal publishes original research papers, invited and submitted review articles, ''Research in Context'' expanding on original work, ''Botanical Briefings'' as short overviews of important topics, and ''Viewpoints'' giving opinions. All papers in each issue are summarized briefly in Content Snapshots , there are topical news items in the Plant Cuttings section and Book Reviews . A rigorous review process ensures that readers are exposed to genuine and novel advances across a wide spectrum of botanical knowledge. All papers aim to advance knowledge and make a difference to our understanding of plant science.