Role of cell-substrate association during plant biomass solubilization by the extreme thermophile Caldicellulosiruptor bescii.

IF 2.6 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tunyaboon Laemthong, Ryan G Bing, James R Crosby, Mohamad J H Manesh, Michael W W Adams, Robert M Kelly
{"title":"Role of cell-substrate association during plant biomass solubilization by the extreme thermophile Caldicellulosiruptor bescii.","authors":"Tunyaboon Laemthong,&nbsp;Ryan G Bing,&nbsp;James R Crosby,&nbsp;Mohamad J H Manesh,&nbsp;Michael W W Adams,&nbsp;Robert M Kelly","doi":"10.1007/s00792-023-01290-7","DOIUrl":null,"url":null,"abstract":"<p><p>Caldicellulosiruptor species are proficient at solubilizing carbohydrates in lignocellulosic biomass through surface (S)-layer bound and secretomic glycoside hydrolases. Tāpirins, surface-associated, non-catalytic binding proteins in Caldicellulosiruptor species, bind tightly to microcrystalline cellulose, and likely play a key role in natural environments for scavenging scarce carbohydrates in hot springs. However, the question arises: If tāpirin concentration on Caldicellulosiruptor cell walls increased above native levels, would this offer any benefit to lignocellulose carbohydrate hydrolysis and, hence, biomass solubilization? This question was addressed by engineering the genes for tight-binding, non-native tāpirins into C. bescii. The engineered C. bescii strains bound more tightly to microcrystalline cellulose (Avicel) and biomass compared to the parent. However, tāpirin overexpression did not significantly improve solubilization or conversion for wheat straw or sugarcane bagasse. When incubated with poplar, the tāpirin-engineered strains increased solubilization by 10% compared to the parent, and corresponding acetate production, a measure of carbohydrate fermentation intensity, was 28% higher for the Calkr_0826 expression strain and 18.5% higher for the Calhy_0908 expression strain. These results show that enhanced binding to the substrate, beyond the native capability, did not improve C. bescii solubilization of plant biomass, but in some cases may improve conversion of released lignocellulose carbohydrates to fermentation products.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":"27 1","pages":"6"},"PeriodicalIF":2.6000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514702/pdf/nihms-1931674.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extremophiles","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00792-023-01290-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Caldicellulosiruptor species are proficient at solubilizing carbohydrates in lignocellulosic biomass through surface (S)-layer bound and secretomic glycoside hydrolases. Tāpirins, surface-associated, non-catalytic binding proteins in Caldicellulosiruptor species, bind tightly to microcrystalline cellulose, and likely play a key role in natural environments for scavenging scarce carbohydrates in hot springs. However, the question arises: If tāpirin concentration on Caldicellulosiruptor cell walls increased above native levels, would this offer any benefit to lignocellulose carbohydrate hydrolysis and, hence, biomass solubilization? This question was addressed by engineering the genes for tight-binding, non-native tāpirins into C. bescii. The engineered C. bescii strains bound more tightly to microcrystalline cellulose (Avicel) and biomass compared to the parent. However, tāpirin overexpression did not significantly improve solubilization or conversion for wheat straw or sugarcane bagasse. When incubated with poplar, the tāpirin-engineered strains increased solubilization by 10% compared to the parent, and corresponding acetate production, a measure of carbohydrate fermentation intensity, was 28% higher for the Calkr_0826 expression strain and 18.5% higher for the Calhy_0908 expression strain. These results show that enhanced binding to the substrate, beyond the native capability, did not improve C. bescii solubilization of plant biomass, but in some cases may improve conversion of released lignocellulose carbohydrates to fermentation products.

Abstract Image

细胞-底物结合在极端嗜热Caldicelllosiruptor bescii溶解植物生物质过程中的作用。
Caldicellosiruptor物种擅长通过表面(S)层结合和分泌组糖苷水解酶溶解木质纤维素生物质中的碳水化合物。Tāpirins是Caldicelllosiruptor物种中的表面相关非催化结合蛋白,与微晶纤维素紧密结合,可能在自然环境中清除温泉中稀缺的碳水化合物方面发挥关键作用。然而,问题来了:如果Caldicelllosiruptor细胞壁上的tāpirin浓度增加到高于天然水平,这会对木质纤维素碳水化合物水解,从而对生物质溶解有任何好处吗?这个问题是通过将紧密结合的非本土tāpirins基因工程转化为C.bescii来解决的。与亲本相比,工程化的贝氏C.bescii菌株与微晶纤维素(Avicel)和生物质的结合更紧密。然而,tāpirin过表达并没有显著改善小麦秸秆或甘蔗渣的溶解或转化。当与杨树孵育时,与亲本相比,tāpirin工程菌株的增溶作用增加了10%,相应的醋酸盐产量(衡量碳水化合物发酵强度的指标)对Calkr_0826表达菌株高28%,对Calhy_0908表达菌株则高18.5%。这些结果表明,与底物的结合增强,超出了天然能力,并没有改善C.bescii对植物生物质的增溶作用,但在某些情况下,可能会改善释放的木质纤维素碳水化合物向发酵产物的转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Extremophiles
Extremophiles 生物-生化与分子生物学
CiteScore
6.80
自引率
6.90%
发文量
28
审稿时长
2 months
期刊介绍: Extremophiles features original research articles, reviews, and method papers on the biology, molecular biology, structure, function, and applications of microbial life at high or low temperature, pressure, acidity, alkalinity, salinity, or desiccation; or in the presence of organic solvents, heavy metals, normally toxic substances, or radiation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信