Eraqi R. Khannoon , Christian Alvarado , Rafael Poveda , Maria Elena de Bellard
{"title":"Description of trunk neural crest migration and peripheral nervous system formation in the Egyptian cobra Naja haje haje","authors":"Eraqi R. Khannoon , Christian Alvarado , Rafael Poveda , Maria Elena de Bellard","doi":"10.1016/j.diff.2023.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>The neural crest is a stem cell population that forms in the neurectoderm of all vertebrates and gives rise to a diverse set of cells such as sensory neurons, Schwann cells and melanocytes. Neural crest development in snakes is still poorly understood. From the point of view of evolutionary and comparative anatomy is an interesting topic given the unique anatomy of snakes. The aim of the study was to characterize how trunk neural crest cells (TNCC) migrate in the developing elapid snake <em>Naja haje haje</em> and consequently, look at the beginnings of development of neural crest derived sensory ganglia (DRG) and spinal nerves. We found that trunk neural crest and DRG development in <em>Naja haje haje</em> is like what has been described in other vertebrates and the colubrid snake strengthening our knowledge on the conserved mechanisms of neural crest development across species. Here we use the marker HNK1 to follow the migratory behavior of TNCC in the elapid snake <em>Naja haje haje</em> through stages 1–6 (1–9 days postoviposition). We observed that the TNCC of both snake species migrate through the rostral portion of the somite, a pattern also conserved in birds and mammals. The development of cobra peripheral nervous system, using neuronal and glial markers, showed the presence of spectrin in Schwann cell precursors and of axonal plexus along the length of the cobra embryos. In conclusion, cobra embryos show strong conserved patterns in TNCC and PNS development among vertebrates.</p></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301468123000385","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The neural crest is a stem cell population that forms in the neurectoderm of all vertebrates and gives rise to a diverse set of cells such as sensory neurons, Schwann cells and melanocytes. Neural crest development in snakes is still poorly understood. From the point of view of evolutionary and comparative anatomy is an interesting topic given the unique anatomy of snakes. The aim of the study was to characterize how trunk neural crest cells (TNCC) migrate in the developing elapid snake Naja haje haje and consequently, look at the beginnings of development of neural crest derived sensory ganglia (DRG) and spinal nerves. We found that trunk neural crest and DRG development in Naja haje haje is like what has been described in other vertebrates and the colubrid snake strengthening our knowledge on the conserved mechanisms of neural crest development across species. Here we use the marker HNK1 to follow the migratory behavior of TNCC in the elapid snake Naja haje haje through stages 1–6 (1–9 days postoviposition). We observed that the TNCC of both snake species migrate through the rostral portion of the somite, a pattern also conserved in birds and mammals. The development of cobra peripheral nervous system, using neuronal and glial markers, showed the presence of spectrin in Schwann cell precursors and of axonal plexus along the length of the cobra embryos. In conclusion, cobra embryos show strong conserved patterns in TNCC and PNS development among vertebrates.
期刊介绍:
Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal.
The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest.
The principal subject areas the journal covers are: • embryonic patterning and organogenesis
• human development and congenital malformation
• mechanisms of cell lineage commitment
• tissue homeostasis and oncogenic transformation
• establishment of cellular polarity
• stem cell differentiation
• cell reprogramming mechanisms
• stability of the differentiated state
• cell and tissue interactions in vivo and in vitro
• signal transduction pathways in development and differentiation
• carcinogenesis and cancer
• mechanisms involved in cell growth and division especially relating to cancer
• differentiation in regeneration and ageing
• therapeutic applications of differentiation processes.