{"title":"Pollution free UV-C radiation to mitigate COVID-19 transmission","authors":"Ashutosh Kumar , Abhishek Raj , Ankit Gupta , Sneha Gautam , Manish Kumar , Hemant Bherwani , Avneesh Anshul","doi":"10.1016/j.gr.2022.07.010","DOIUrl":null,"url":null,"abstract":"<div><p>The high rate of transmission of the COVID-19 virus has brought various types of disinfection techniques, for instance, hydrogen peroxide vaporization, microwave generating steam, UV radiation, and dry heating, etc. to prevent the further transmission of the virus. The chemical-based techniques are predominantly used for sanitization of hands, buildings, hospitals, etc. However, these chemicals may affect the health of humans and the environment in unexplored aspects. Furthermore, the UV lamp-based radiation sanitization technique had been applied but has not gained larger acceptability owing to its limitation to penetrate different materials. Therefore, the optical properties of materials are especially important for the utilization of UV light on such disinfection applications. The germicidal or microorganism inactivation application of UV-C has only been in-use in a closed chamber, due to its harmful effect on human skin and the eye. However, it is essential to optimize UV for its use in an open environment for a larger benefit to mitigate the virus spread. In view of this, far UV-C (222 nm) based technology has emerged as a potential option for the sanitization in open areas and degradation of microorganisms present in aerosol during the working conditions. Hence, in the present review article, efforts have been made to evaluate the technical aspects of UV (under the different spectrum and wavelength ranges) and the control of COVID 19 virus spread in the atmosphere including the possibilities of the human body sanitization in working condition.</p></div>","PeriodicalId":12761,"journal":{"name":"Gondwana Research","volume":"114 ","pages":"Pages 78-86"},"PeriodicalIF":7.2000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9345658/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gondwana Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1342937X22002143","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
The high rate of transmission of the COVID-19 virus has brought various types of disinfection techniques, for instance, hydrogen peroxide vaporization, microwave generating steam, UV radiation, and dry heating, etc. to prevent the further transmission of the virus. The chemical-based techniques are predominantly used for sanitization of hands, buildings, hospitals, etc. However, these chemicals may affect the health of humans and the environment in unexplored aspects. Furthermore, the UV lamp-based radiation sanitization technique had been applied but has not gained larger acceptability owing to its limitation to penetrate different materials. Therefore, the optical properties of materials are especially important for the utilization of UV light on such disinfection applications. The germicidal or microorganism inactivation application of UV-C has only been in-use in a closed chamber, due to its harmful effect on human skin and the eye. However, it is essential to optimize UV for its use in an open environment for a larger benefit to mitigate the virus spread. In view of this, far UV-C (222 nm) based technology has emerged as a potential option for the sanitization in open areas and degradation of microorganisms present in aerosol during the working conditions. Hence, in the present review article, efforts have been made to evaluate the technical aspects of UV (under the different spectrum and wavelength ranges) and the control of COVID 19 virus spread in the atmosphere including the possibilities of the human body sanitization in working condition.
期刊介绍:
Gondwana Research (GR) is an International Journal aimed to promote high quality research publications on all topics related to solid Earth, particularly with reference to the origin and evolution of continents, continental assemblies and their resources. GR is an "all earth science" journal with no restrictions on geological time, terrane or theme and covers a wide spectrum of topics in geosciences such as geology, geomorphology, palaeontology, structure, petrology, geochemistry, stable isotopes, geochronology, economic geology, exploration geology, engineering geology, geophysics, and environmental geology among other themes, and provides an appropriate forum to integrate studies from different disciplines and different terrains. In addition to regular articles and thematic issues, the journal invites high profile state-of-the-art reviews on thrust area topics for its column, ''GR FOCUS''. Focus articles include short biographies and photographs of the authors. Short articles (within ten printed pages) for rapid publication reporting important discoveries or innovative models of global interest will be considered under the category ''GR LETTERS''.