James Gibson;David C. Atkins;Torrey A. Creed;Zac Imel;Panayiotis Georgiou;Shrikanth Narayanan
{"title":"Multi-Label Multi-Task Deep Learning for Behavioral Coding","authors":"James Gibson;David C. Atkins;Torrey A. Creed;Zac Imel;Panayiotis Georgiou;Shrikanth Narayanan","doi":"10.1109/TAFFC.2019.2952113","DOIUrl":null,"url":null,"abstract":"We propose a methodology for estimating human behaviors in psychotherapy sessions using multi-label and multi-task learning paradigms. We discuss the problem of behavioral coding in which data of human interactions are annotated with labels to describe relevant human behaviors of interest. We describe two related, yet distinct, corpora consisting of therapist-client interactions in psychotherapy sessions. We experimentally compare the proposed learning approaches for estimating behaviors of interest in these datasets. Specifically, we compare single and multiple label learning approaches, single and multiple task learning approaches, and evaluate the performance of these approaches when incorporating turn context. We demonstrate that the best multi-label, multi-task learning model with turn context achieves 18.9 and 19.5 percent absolute improvements with respect to a logistic regression classifier (for each behavioral coding task respectively) and 6.4 and 6.1 percent absolute improvements with respect to the best single-label, single-task deep neural network models. Lastly, we discuss the insights these modeling paradigms provide into these complex interactions including key commonalities and differences of behaviors within and between the two prevalent psychotherapy approaches–Motivational Interviewing and Cognitive Behavioral Therapy–considered.","PeriodicalId":13131,"journal":{"name":"IEEE Transactions on Affective Computing","volume":"13 1","pages":"508-518"},"PeriodicalIF":9.6000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TAFFC.2019.2952113","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Affective Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/8894557/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 24
Abstract
We propose a methodology for estimating human behaviors in psychotherapy sessions using multi-label and multi-task learning paradigms. We discuss the problem of behavioral coding in which data of human interactions are annotated with labels to describe relevant human behaviors of interest. We describe two related, yet distinct, corpora consisting of therapist-client interactions in psychotherapy sessions. We experimentally compare the proposed learning approaches for estimating behaviors of interest in these datasets. Specifically, we compare single and multiple label learning approaches, single and multiple task learning approaches, and evaluate the performance of these approaches when incorporating turn context. We demonstrate that the best multi-label, multi-task learning model with turn context achieves 18.9 and 19.5 percent absolute improvements with respect to a logistic regression classifier (for each behavioral coding task respectively) and 6.4 and 6.1 percent absolute improvements with respect to the best single-label, single-task deep neural network models. Lastly, we discuss the insights these modeling paradigms provide into these complex interactions including key commonalities and differences of behaviors within and between the two prevalent psychotherapy approaches–Motivational Interviewing and Cognitive Behavioral Therapy–considered.
期刊介绍:
The IEEE Transactions on Affective Computing is an international and interdisciplinary journal. Its primary goal is to share research findings on the development of systems capable of recognizing, interpreting, and simulating human emotions and related affective phenomena. The journal publishes original research on the underlying principles and theories that explain how and why affective factors shape human-technology interactions. It also focuses on how techniques for sensing and simulating affect can enhance our understanding of human emotions and processes. Additionally, the journal explores the design, implementation, and evaluation of systems that prioritize the consideration of affect in their usability. We also welcome surveys of existing work that provide new perspectives on the historical and future directions of this field.