Erin E Dooley, J F Winkles, Alicia Colvin, Christopher E Kline, Sylvia E Badon, Keith M Diaz, Carrie A Karvonen-Gutierrez, Howard M Kravitz, Barbara Sternfeld, S Justin Thomas, Martica H Hall, Kelley Pettee Gabriel
{"title":"Method for Activity Sleep Harmonization (MASH): a novel method for harmonizing data from two wearable devices to estimate 24-h sleep-wake cycles.","authors":"Erin E Dooley, J F Winkles, Alicia Colvin, Christopher E Kline, Sylvia E Badon, Keith M Diaz, Carrie A Karvonen-Gutierrez, Howard M Kravitz, Barbara Sternfeld, S Justin Thomas, Martica H Hall, Kelley Pettee Gabriel","doi":"10.1186/s44167-023-00017-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Daily 24-h sleep-wake cycles have important implications for health, however researcher preferences in choice and location of wearable devices for behavior measurement can make 24-h cycles difficult to estimate. Further, missing data due to device malfunction, improper initialization, and/or the participant forgetting to wear one or both devices can complicate construction of daily behavioral compositions. The Method for Activity Sleep Harmonization (MASH) is a process that harmonizes data from two different devices using data from women who concurrently wore hip (waking) and wrist (sleep) devices for ≥ 4 days.</p><p><strong>Methods: </strong>MASH was developed using data from 1285 older community-dwelling women (ages: 60-72 years) who concurrently wore a hip-worn ActiGraph GT3X + accelerometer (waking activity) and a wrist-worn Actiwatch 2 device (sleep) for ≥ 4 days (N = 10,123 days) at the same time. MASH is a two-tiered process using (1) scored sleep data (from Actiwatch) or (2) one-dimensional convolutional neural networks (1D CNN) to create predicted wake intervals, reconcile sleep and activity data disagreement, and create day-level night-day-night pairings. MASH chooses between two different 1D CNN models based on data availability (ActiGraph + Actiwatch or ActiGraph-only). MASH was evaluated using Receiver Operating Characteristic (ROC) and Precision-Recall curves and sleep-wake intervals are compared before (pre-harmonization) and after MASH application.</p><p><strong>Results: </strong>MASH 1D CNNs had excellent performance (ActiGraph + Actiwatch ROC-AUC = 0.991 and ActiGraph-only ROC-AUC = 0.983). After exclusions (partial wear [n = 1285], missing sleep data proceeding activity data [n = 269], and < 60 min sleep [n = 9]), 8560 days were used to show the utility of MASH. Of the 8560 days, 46.0% had ≥ 1-min disagreement between the devices or used the 1D CNN for sleep estimates. The MASH waking intervals were corrected (median minutes [IQR]: -27.0 [-115.0, 8.0]) relative to their pre-harmonization estimates. Most correction (-18.0 [-93.0, 2.0] minutes) was due to reducing sedentary behavior. The other waking behaviors were reduced a median (IQR) of -1.0 (-4.0, 1.0) minutes.</p><p><strong>Conclusions: </strong>Implementing MASH to harmonize concurrently worn hip and wrist devices can minimizes data loss and correct for disagreement between devices, ultimately improving accuracy of 24-h compositions necessary for time-use epidemiology.</p>","PeriodicalId":73581,"journal":{"name":"Journal of activity, sedentary and sleep behaviors","volume":"2 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10492590/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of activity, sedentary and sleep behaviors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s44167-023-00017-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Daily 24-h sleep-wake cycles have important implications for health, however researcher preferences in choice and location of wearable devices for behavior measurement can make 24-h cycles difficult to estimate. Further, missing data due to device malfunction, improper initialization, and/or the participant forgetting to wear one or both devices can complicate construction of daily behavioral compositions. The Method for Activity Sleep Harmonization (MASH) is a process that harmonizes data from two different devices using data from women who concurrently wore hip (waking) and wrist (sleep) devices for ≥ 4 days.
Methods: MASH was developed using data from 1285 older community-dwelling women (ages: 60-72 years) who concurrently wore a hip-worn ActiGraph GT3X + accelerometer (waking activity) and a wrist-worn Actiwatch 2 device (sleep) for ≥ 4 days (N = 10,123 days) at the same time. MASH is a two-tiered process using (1) scored sleep data (from Actiwatch) or (2) one-dimensional convolutional neural networks (1D CNN) to create predicted wake intervals, reconcile sleep and activity data disagreement, and create day-level night-day-night pairings. MASH chooses between two different 1D CNN models based on data availability (ActiGraph + Actiwatch or ActiGraph-only). MASH was evaluated using Receiver Operating Characteristic (ROC) and Precision-Recall curves and sleep-wake intervals are compared before (pre-harmonization) and after MASH application.
Results: MASH 1D CNNs had excellent performance (ActiGraph + Actiwatch ROC-AUC = 0.991 and ActiGraph-only ROC-AUC = 0.983). After exclusions (partial wear [n = 1285], missing sleep data proceeding activity data [n = 269], and < 60 min sleep [n = 9]), 8560 days were used to show the utility of MASH. Of the 8560 days, 46.0% had ≥ 1-min disagreement between the devices or used the 1D CNN for sleep estimates. The MASH waking intervals were corrected (median minutes [IQR]: -27.0 [-115.0, 8.0]) relative to their pre-harmonization estimates. Most correction (-18.0 [-93.0, 2.0] minutes) was due to reducing sedentary behavior. The other waking behaviors were reduced a median (IQR) of -1.0 (-4.0, 1.0) minutes.
Conclusions: Implementing MASH to harmonize concurrently worn hip and wrist devices can minimizes data loss and correct for disagreement between devices, ultimately improving accuracy of 24-h compositions necessary for time-use epidemiology.