{"title":"Classification of neuroimaging data in Alzheimer's disease using particle swarm optimization: A systematic review.","authors":"Suhail Ahmad Dar, Nasheed Imtiaz","doi":"10.1080/23279095.2023.2169886","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Particle swarm optimization (PSO) is an algorithm that involves the optimization of Non-linear and Multidimensional problems to reach the best solutions with minimal parameterization. This metaheuristic model has frequently been used in the Pathological domain. This optimization model has been used in diverse forms while predicting Alzheimer's disease. It is a robust algorithm that works on linear and multi-modal data while predicting Alzheimer's disease. PSO techniques have been in action for quite some time for detecting various diseases and this paper systematically reviews the papers on various kinds of PSO techniques.</p><p><strong>Methods: </strong>To perform the systematic review, PRISMA guidelines were followed and a Boolean search (\"particle swarm optimization\" OR \"PSO\") AND Neuroimaging AND (Alzheimer's disease prediction OR classification OR diagnosis) were performed. The query was run in 4-reputed databases: Google Scholar, Scopus, Science Direct, and Wiley publications.</p><p><strong>Results: </strong>For the final analysis, 10 papers were incorporated for qualitative and quantitative synthesis. PSO has shown a dominant character while handling the uni-modal as well as the multi-modal data while predicting the conversion from MCI to Alzheimer's. It can be seen from the table that almost all the 10 reviewed papers had MRI-driven data. The accuracy rate was accentuated while adding other modalities or Neurocognitive measures.</p><p><strong>Conclusions: </strong>Through this algorithm, we are providing an opportunity to other researchers to compare this algorithm with other state-of-the-art algorithms, while seeing the classification accuracy, with the aim of early prediction and progression of MCI into Alzheimer's disease.</p>","PeriodicalId":51308,"journal":{"name":"Applied Neuropsychology-Adult","volume":" ","pages":"545-556"},"PeriodicalIF":1.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Neuropsychology-Adult","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/23279095.2023.2169886","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/31 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: Particle swarm optimization (PSO) is an algorithm that involves the optimization of Non-linear and Multidimensional problems to reach the best solutions with minimal parameterization. This metaheuristic model has frequently been used in the Pathological domain. This optimization model has been used in diverse forms while predicting Alzheimer's disease. It is a robust algorithm that works on linear and multi-modal data while predicting Alzheimer's disease. PSO techniques have been in action for quite some time for detecting various diseases and this paper systematically reviews the papers on various kinds of PSO techniques.
Methods: To perform the systematic review, PRISMA guidelines were followed and a Boolean search ("particle swarm optimization" OR "PSO") AND Neuroimaging AND (Alzheimer's disease prediction OR classification OR diagnosis) were performed. The query was run in 4-reputed databases: Google Scholar, Scopus, Science Direct, and Wiley publications.
Results: For the final analysis, 10 papers were incorporated for qualitative and quantitative synthesis. PSO has shown a dominant character while handling the uni-modal as well as the multi-modal data while predicting the conversion from MCI to Alzheimer's. It can be seen from the table that almost all the 10 reviewed papers had MRI-driven data. The accuracy rate was accentuated while adding other modalities or Neurocognitive measures.
Conclusions: Through this algorithm, we are providing an opportunity to other researchers to compare this algorithm with other state-of-the-art algorithms, while seeing the classification accuracy, with the aim of early prediction and progression of MCI into Alzheimer's disease.
期刊介绍:
pplied Neuropsychology-Adult publishes clinical neuropsychological articles concerning assessment, brain functioning and neuroimaging, neuropsychological treatment, and rehabilitation in adults. Full-length articles and brief communications are included. Case studies of adult patients carefully assessing the nature, course, or treatment of clinical neuropsychological dysfunctions in the context of scientific literature, are suitable. Review manuscripts addressing critical issues are encouraged. Preference is given to papers of clinical relevance to others in the field. All submitted manuscripts are subject to initial appraisal by the Editor-in-Chief, and, if found suitable for further considerations are peer reviewed by independent, anonymous expert referees. All peer review is single-blind and submission is online via ScholarOne Manuscripts.