Improving the Biological Properties of UHMWPE Biocomposite for Orthopedic Applications.

IF 3 Q3 MATERIALS SCIENCE, BIOMATERIALS
Tamara R Kadhim, Jawad K Oleiwi, Qahtan A Hamad
{"title":"Improving the Biological Properties of UHMWPE Biocomposite for Orthopedic Applications.","authors":"Tamara R Kadhim,&nbsp;Jawad K Oleiwi,&nbsp;Qahtan A Hamad","doi":"10.1155/2023/4219841","DOIUrl":null,"url":null,"abstract":"<p><p>Bone plates are essential for bone fracture healing because they modify the biomechanical microenvironment at the fracture site to provide the necessary mechanical fixation for fracture fragments. The objective of this study was to determine cell availability, antibacterial activity, and wettability through a contact angle test. However, biocomposites that involve UHMWPE reinforced with n-HA and n-TiO<sub>2</sub> particles at different fractions (0, 1.5, 2.5, 3.5, and 4.5%) and 5% from carbon and Kevlar fibers were fabricated by hot pressing technique. In vitro studies revealed good cell viability on the surface of the hybrid biocomposite even after 72 hr. The UHMEPE nanocomposite reinforced with carbon showed better cell attachment for fibroblasts than other UHMWPE nanocomposite materials reinforced with Kevlar fiber. The results of the contact angle measurements indicated that the incorporation of nanoparticles and the fiber reinforcement increased the wettability due to the hydrophilic character of nanobiocomposite, and also (UHMWPE-4.5% wt. TiO<sub>2</sub>-CF) biocomposite was the best wettability (∼48% as compared to neat UHMWPE). Antibacterial experiments involving Gram-positive bacteria, <i>Staphylococcus aureus,</i> confirm excellent bactericidal property for (UHMWPE-4.5% wt. TiO<sub>2</sub>-CF) biocomposite. Thermal analysis of the produced nanocomposites revealed that they had higher melting and crystallinity temperatures than pure UHMWPE.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2023 ","pages":"4219841"},"PeriodicalIF":3.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9851776/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4219841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

Bone plates are essential for bone fracture healing because they modify the biomechanical microenvironment at the fracture site to provide the necessary mechanical fixation for fracture fragments. The objective of this study was to determine cell availability, antibacterial activity, and wettability through a contact angle test. However, biocomposites that involve UHMWPE reinforced with n-HA and n-TiO2 particles at different fractions (0, 1.5, 2.5, 3.5, and 4.5%) and 5% from carbon and Kevlar fibers were fabricated by hot pressing technique. In vitro studies revealed good cell viability on the surface of the hybrid biocomposite even after 72 hr. The UHMEPE nanocomposite reinforced with carbon showed better cell attachment for fibroblasts than other UHMWPE nanocomposite materials reinforced with Kevlar fiber. The results of the contact angle measurements indicated that the incorporation of nanoparticles and the fiber reinforcement increased the wettability due to the hydrophilic character of nanobiocomposite, and also (UHMWPE-4.5% wt. TiO2-CF) biocomposite was the best wettability (∼48% as compared to neat UHMWPE). Antibacterial experiments involving Gram-positive bacteria, Staphylococcus aureus, confirm excellent bactericidal property for (UHMWPE-4.5% wt. TiO2-CF) biocomposite. Thermal analysis of the produced nanocomposites revealed that they had higher melting and crystallinity temperatures than pure UHMWPE.

Abstract Image

Abstract Image

Abstract Image

提高超高分子量聚乙烯生物复合材料在骨科领域的生物学性能。
骨板对骨折愈合至关重要,因为它们可以改变骨折部位的生物力学微环境,为骨折碎片提供必要的机械固定。本研究的目的是通过接触角测试确定细胞可用性、抗菌活性和润湿性。然而,通过热压技术制备了由碳和凯夫拉尔纤维以不同分数(0、1.5、2.5、3.5和4.5%)和5%的n-HA和n-TiO2颗粒增强的超高分子量聚乙烯生物复合材料。体外研究表明,即使在72小时后,混合生物复合材料表面仍具有良好的细胞活力。碳增强UHMEPE纳米复合材料对成纤维细胞的附着性优于其他凯夫拉纤维增强UHMWPE纳米复合材料。接触角测量结果表明,纳米颗粒和纤维增强剂的掺入增加了纳米生物复合材料的亲水性,并且(UHMWPE-4.5% wt. TiO2-CF)生物复合材料的润湿性最好(与纯UHMWPE相比,润湿性为48%)。对革兰氏阳性菌金黄色葡萄球菌的抑菌实验证实(UHMWPE-4.5% wt. TiO2-CF)生物复合材料具有优异的杀菌性能。对制备的纳米复合材料的热分析表明,它们比纯超高分子量聚乙烯具有更高的熔融温度和结晶度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biomaterials
International Journal of Biomaterials MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
4.30
自引率
3.20%
发文量
50
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信