Erin L. Macartney , Angela J Crean , Russell Bonduriansky
{"title":"Parental dietary protein effects on offspring viability in insects and other oviparous invertebrates: a meta-analysis","authors":"Erin L. Macartney , Angela J Crean , Russell Bonduriansky","doi":"10.1016/j.cris.2022.100045","DOIUrl":null,"url":null,"abstract":"<div><p>Dietary protein is a key regulator of reproductive effort in animals, but protein consumption also tends to accelerate senescence and reduce longevity. Given this protein-mediated trade-off between reproduction and survival, how does protein consumption by parents affect the viability of their offspring? In insects, protein consumption by females enhances fecundity, but trade-offs between offspring quantity and quality could result in negative effects of protein consumption on offspring viability. Likewise, protein consumption by males tends to enhance the expression of sexual traits but could have negative effects on offspring viability, mediated by epigenetic factors transmitted via the ejaculate. It remains unclear whether dietary protein has consistent effects on offspring viability across species, and whether these effects are sex-specific. To address this, we conducted a meta-analysis of experimental studies that examined the effects of protein content in the maternal and/or paternal diet in insects and other oviparous invertebrates. We did not find consistent effects of paternal or maternal protein consumption on offspring viability. Rather, effects of dietary protein on offspring vary in both magnitude and sign across taxonomic groups. Further studies are needed to determine how the effects of dietary protein on offspring relate to variation in reproductive biology across species. Our findings also highlight important gaps in the literature and limitations in experiment design.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"2 ","pages":"Article 100045"},"PeriodicalIF":2.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/01/58/main.PMC9846472.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Insect Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666515822000178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dietary protein is a key regulator of reproductive effort in animals, but protein consumption also tends to accelerate senescence and reduce longevity. Given this protein-mediated trade-off between reproduction and survival, how does protein consumption by parents affect the viability of their offspring? In insects, protein consumption by females enhances fecundity, but trade-offs between offspring quantity and quality could result in negative effects of protein consumption on offspring viability. Likewise, protein consumption by males tends to enhance the expression of sexual traits but could have negative effects on offspring viability, mediated by epigenetic factors transmitted via the ejaculate. It remains unclear whether dietary protein has consistent effects on offspring viability across species, and whether these effects are sex-specific. To address this, we conducted a meta-analysis of experimental studies that examined the effects of protein content in the maternal and/or paternal diet in insects and other oviparous invertebrates. We did not find consistent effects of paternal or maternal protein consumption on offspring viability. Rather, effects of dietary protein on offspring vary in both magnitude and sign across taxonomic groups. Further studies are needed to determine how the effects of dietary protein on offspring relate to variation in reproductive biology across species. Our findings also highlight important gaps in the literature and limitations in experiment design.