D Lu, F Li, C Zhao, Y Ye, X Zhang, P Yang, X Zhang
{"title":"A Remineralizing and Antibacterial Coating for Arresting Caries.","authors":"D Lu, F Li, C Zhao, Y Ye, X Zhang, P Yang, X Zhang","doi":"10.1177/00220345231189992","DOIUrl":null,"url":null,"abstract":"<p><p>Dental caries is a dynamic disease induced by the unbalance between demineralization of dental hard tissues caused by biofilm and remineralization of them; however, although various effective remineralization methods have been well documented, it is a challenge to reestablish the balance by enhancing remineralization alone while ignoring the antibacterial therapy. Therefore, the integration of remineralizing and antibacterial technologies offers a promising strategy to halt natural caries progression in clinical practice. Here, the conception of interrupting dental caries (IDC) was proposed based on the development of dual-functional coating with remineralizing and antibacterial properties. In this study, bovine serum albumin (BSA) loaded octenidine (OCT) successfully to form a BSA-OCT composite. Subsequently, through fast amyloid-like aggregation, the phase-transited BSA-OCT (PTB-OCT) coating can be covered on teeth, resin composite, or sealant surfaces in 30 min by a simple smearing process. The PTB-OCT coating showed satisfactory effects in promoting the remineralization of demineralized enamel and dentin in vitro. Moreover, this coating also exerted significant acid-resistance stability and anti-biofilm properties. Equally importantly, this coating exhibited promising abilities in reducing the microleakage between the tooth and resin composite in vitro and preventing primary and secondary caries in vivo. In conclusion, this novel dual-functional PTB-OCT coating could reestablish the balance between demineralization and remineralization in the process of caries, thereby potentially preventing or arresting caries.</p>","PeriodicalId":15596,"journal":{"name":"Journal of Dental Research","volume":" ","pages":"1315-1325"},"PeriodicalIF":5.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dental Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/00220345231189992","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Dental caries is a dynamic disease induced by the unbalance between demineralization of dental hard tissues caused by biofilm and remineralization of them; however, although various effective remineralization methods have been well documented, it is a challenge to reestablish the balance by enhancing remineralization alone while ignoring the antibacterial therapy. Therefore, the integration of remineralizing and antibacterial technologies offers a promising strategy to halt natural caries progression in clinical practice. Here, the conception of interrupting dental caries (IDC) was proposed based on the development of dual-functional coating with remineralizing and antibacterial properties. In this study, bovine serum albumin (BSA) loaded octenidine (OCT) successfully to form a BSA-OCT composite. Subsequently, through fast amyloid-like aggregation, the phase-transited BSA-OCT (PTB-OCT) coating can be covered on teeth, resin composite, or sealant surfaces in 30 min by a simple smearing process. The PTB-OCT coating showed satisfactory effects in promoting the remineralization of demineralized enamel and dentin in vitro. Moreover, this coating also exerted significant acid-resistance stability and anti-biofilm properties. Equally importantly, this coating exhibited promising abilities in reducing the microleakage between the tooth and resin composite in vitro and preventing primary and secondary caries in vivo. In conclusion, this novel dual-functional PTB-OCT coating could reestablish the balance between demineralization and remineralization in the process of caries, thereby potentially preventing or arresting caries.
期刊介绍:
The Journal of Dental Research (JDR) is a peer-reviewed scientific journal committed to sharing new knowledge and information on all sciences related to dentistry and the oral cavity, covering health and disease. With monthly publications, JDR ensures timely communication of the latest research to the oral and dental community.