{"title":"Revision and Analysis of the Formation Constants of Rare Earth Diketonates","authors":"Maxim A. Lutoshkin*, ","doi":"10.1021/acs.jpca.3c05250","DOIUrl":null,"url":null,"abstract":"<p >Over the course of the past several decades, spectroscopic surveys have unveiled the intricate nature of the aqueous chelation of Rare Earth Metals. Herein, we have collected a large data set about the interaction between 16 metal ions (Sc<sup>3+</sup>, Y<sup>3+</sup>, La<sup>3+</sup>, Ce<sup>3+</sup>, Pr<sup>3+</sup>, Nd<sup>3+</sup>, Sm<sup>3+</sup>, Eu<sup>3+</sup>, Gd<sup>3+</sup>, Tb<sup>3+</sup>, Dy<sup>3+</sup>, Ho<sup>3+</sup>, Er<sup>3+</sup>, Tm<sup>3+</sup>, Yb<sup>3+</sup>, and Lu<sup>3+</sup>) and perfluorinated nonsymmetric β-diketones, which contain chalcogen-bearing heterocyclic rings or aromatic moiety. The role and influence of the side ions on the chelation processes have been re-estimated to obtain revised stability constants. After analysis of more than 150 revised formation constants, a better periodic correlation has been shown. Scrutinizing the effects of the substituted group has revealed an “anti-Coulomb” behavior within the chalcogen group of diketones and a strictly electrostatic trend within the Rare Earth Metals series. Within the first-order approximation, the spin–orbit contribution to the Gibbs free energy of chelation has been estimated.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"127 40","pages":"8383–8391"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpca.3c05250","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Over the course of the past several decades, spectroscopic surveys have unveiled the intricate nature of the aqueous chelation of Rare Earth Metals. Herein, we have collected a large data set about the interaction between 16 metal ions (Sc3+, Y3+, La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+, and Lu3+) and perfluorinated nonsymmetric β-diketones, which contain chalcogen-bearing heterocyclic rings or aromatic moiety. The role and influence of the side ions on the chelation processes have been re-estimated to obtain revised stability constants. After analysis of more than 150 revised formation constants, a better periodic correlation has been shown. Scrutinizing the effects of the substituted group has revealed an “anti-Coulomb” behavior within the chalcogen group of diketones and a strictly electrostatic trend within the Rare Earth Metals series. Within the first-order approximation, the spin–orbit contribution to the Gibbs free energy of chelation has been estimated.
期刊介绍:
The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.