Ryan Jin Young Kim, Su-Min Cho, Woo-Sun Jung, Ji-Man Park
{"title":"Trueness and surface characteristics of 3-dimensional printed casts made with different technologies.","authors":"Ryan Jin Young Kim, Su-Min Cho, Woo-Sun Jung, Ji-Man Park","doi":"10.1016/j.prosdent.2022.12.002","DOIUrl":null,"url":null,"abstract":"<p><strong>Statement of problem: </strong>Three-dimensional (3D) printers should be capable of fabricating products with high accuracy for potential use in a wide range of dental applications. The trueness and surface characteristics of 3D-printed casts made with different technologies remain unclear.</p><p><strong>Purpose: </strong>The purpose of this in vitro study was to evaluate the trueness and surface characteristics of 4 types of dental casts printed using 6 different 3D printers.</p><p><strong>Material and methods: </strong>Four dental casts prepared for intracoronal and extracoronal restorations were printed using 6 different 3D printers-2 printers of each printing technology (FDM: Creator, Lugo; DLP: D2, ND5100; SLA: Form 2, Form 3). The printed casts were scanned to obtain standard tessellation language (STL) data sets that were superimposed onto the reference to evaluate their trueness (n=15). Trueness was measured based on overall deviations for each cast and for sectional deviations within the cavities. For qualitative evaluation, the surface characteristics of the 3D-printed casts were analyzed by using a digital camera, stereomicroscope, and scanning electron microscope. Statistical analyses were conducted using the Kruskal-Wallis test, followed by multiple Mann-Whitney U tests for pairwise comparisons among groups (α=.05).</p><p><strong>Results: </strong>The overall median trueness values were lowest with the Form 3 (27.9 μm), followed by the ND5100 (30.0 μm), Lugo (37.1 μm), D2 (41.4 μm), Form 2 (46.9 μm), and Creator (83.3 μm) (P<.05). Sectional deviations within the cavity were generally greater than overall deviation. Macroscopic and microscopic images showed that the reproduced casts had the smoothest surface with the SLA, followed by the DLP and FDM printers. Horizontal layers were more discernible with the FDM printer.</p><p><strong>Conclusions: </strong>The trueness of the 3D-printed casts was influenced by the type of tooth preparation and was printer dependent. Among the tested 3D printers, the Form 3 produced the most accurate casts, while the Creator produced the least accurate casts.</p>","PeriodicalId":16866,"journal":{"name":"Journal of Prosthetic Dentistry","volume":" ","pages":"1324.e1-1324.e11"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Prosthetic Dentistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.prosdent.2022.12.002","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Statement of problem: Three-dimensional (3D) printers should be capable of fabricating products with high accuracy for potential use in a wide range of dental applications. The trueness and surface characteristics of 3D-printed casts made with different technologies remain unclear.
Purpose: The purpose of this in vitro study was to evaluate the trueness and surface characteristics of 4 types of dental casts printed using 6 different 3D printers.
Material and methods: Four dental casts prepared for intracoronal and extracoronal restorations were printed using 6 different 3D printers-2 printers of each printing technology (FDM: Creator, Lugo; DLP: D2, ND5100; SLA: Form 2, Form 3). The printed casts were scanned to obtain standard tessellation language (STL) data sets that were superimposed onto the reference to evaluate their trueness (n=15). Trueness was measured based on overall deviations for each cast and for sectional deviations within the cavities. For qualitative evaluation, the surface characteristics of the 3D-printed casts were analyzed by using a digital camera, stereomicroscope, and scanning electron microscope. Statistical analyses were conducted using the Kruskal-Wallis test, followed by multiple Mann-Whitney U tests for pairwise comparisons among groups (α=.05).
Results: The overall median trueness values were lowest with the Form 3 (27.9 μm), followed by the ND5100 (30.0 μm), Lugo (37.1 μm), D2 (41.4 μm), Form 2 (46.9 μm), and Creator (83.3 μm) (P<.05). Sectional deviations within the cavity were generally greater than overall deviation. Macroscopic and microscopic images showed that the reproduced casts had the smoothest surface with the SLA, followed by the DLP and FDM printers. Horizontal layers were more discernible with the FDM printer.
Conclusions: The trueness of the 3D-printed casts was influenced by the type of tooth preparation and was printer dependent. Among the tested 3D printers, the Form 3 produced the most accurate casts, while the Creator produced the least accurate casts.
期刊介绍:
The Journal of Prosthetic Dentistry is the leading professional journal devoted exclusively to prosthetic and restorative dentistry. The Journal is the official publication for 24 leading U.S. international prosthodontic organizations. The monthly publication features timely, original peer-reviewed articles on the newest techniques, dental materials, and research findings. The Journal serves prosthodontists and dentists in advanced practice, and features color photos that illustrate many step-by-step procedures. The Journal of Prosthetic Dentistry is included in Index Medicus and CINAHL.