Richard N Jones, Jennifer J Manly, Kenneth M Langa, Lindsay H Ryan, Deborah A Levine, Ryan McCammon, David Weir
{"title":"Factor structure of the Harmonized Cognitive Assessment Protocol neuropsychological battery in the Health and Retirement Study.","authors":"Richard N Jones, Jennifer J Manly, Kenneth M Langa, Lindsay H Ryan, Deborah A Levine, Ryan McCammon, David Weir","doi":"10.1017/S135561772300019X","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The Harmonized Cognitive Assessment Protocol (HCAP) describes an assessment battery and a family of population-representative studies measuring neuropsychological performance. We describe the factorial structure of the HCAP battery in the US Health and Retirement Study (HRS).</p><p><strong>Method: </strong>The HCAP battery was compiled from existing measures by a cross-disciplinary and international panel of researchers. The HCAP battery was used in the 2016 wave of the HRS. We used factor analysis methods to assess and refine a theoretically driven single and multiple domain factor structure for tests included in the HCAP battery among 3,347 participants with evaluable performance data.</p><p><strong>Results: </strong>For the eight domains of cognitive functioning identified (orientation, memory [immediate, delayed, and recognition], set shifting, attention/speed, language/fluency, and visuospatial), all single factor models fit reasonably well, although four of these domains had either 2 or 3 indicators where fit must be perfect and is not informative. Multidimensional models suggested the eight-domain model was overly complex. A five-domain model (orientation, memory delayed and recognition, executive functioning, language/fluency, visuospatial) was identified as a reasonable model for summarizing performance in this sample (standardized root mean square residual = 0.05, root mean square error of approximation = 0.05, confirmatory fit index = 0.94).</p><p><strong>Conclusions: </strong>The HCAP battery conforms adequately to a multidimensional structure of neuropsychological performance. The derived measurement models can be used to operationalize notions of neurocognitive impairment, and as a starting point for prioritizing pre-statistical harmonization and evaluating configural invariance in cross-national research.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787803/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1017/S135561772300019X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The Harmonized Cognitive Assessment Protocol (HCAP) describes an assessment battery and a family of population-representative studies measuring neuropsychological performance. We describe the factorial structure of the HCAP battery in the US Health and Retirement Study (HRS).
Method: The HCAP battery was compiled from existing measures by a cross-disciplinary and international panel of researchers. The HCAP battery was used in the 2016 wave of the HRS. We used factor analysis methods to assess and refine a theoretically driven single and multiple domain factor structure for tests included in the HCAP battery among 3,347 participants with evaluable performance data.
Results: For the eight domains of cognitive functioning identified (orientation, memory [immediate, delayed, and recognition], set shifting, attention/speed, language/fluency, and visuospatial), all single factor models fit reasonably well, although four of these domains had either 2 or 3 indicators where fit must be perfect and is not informative. Multidimensional models suggested the eight-domain model was overly complex. A five-domain model (orientation, memory delayed and recognition, executive functioning, language/fluency, visuospatial) was identified as a reasonable model for summarizing performance in this sample (standardized root mean square residual = 0.05, root mean square error of approximation = 0.05, confirmatory fit index = 0.94).
Conclusions: The HCAP battery conforms adequately to a multidimensional structure of neuropsychological performance. The derived measurement models can be used to operationalize notions of neurocognitive impairment, and as a starting point for prioritizing pre-statistical harmonization and evaluating configural invariance in cross-national research.