Modulation of function and structure of stratum corneum in sphingomyelin synthase 2-deficient mice

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nozomi Honma , Ichiro Hatta , Toshiro Okazaki , Yoshihiro Tokudome
{"title":"Modulation of function and structure of stratum corneum in sphingomyelin synthase 2-deficient mice","authors":"Nozomi Honma ,&nbsp;Ichiro Hatta ,&nbsp;Toshiro Okazaki ,&nbsp;Yoshihiro Tokudome","doi":"10.1016/j.chemphyslip.2022.105255","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Sphingomyelin synthase (SMS) synthesizes sphingomyelin (SM) from </span>ceramide<span><span> (Cer), a precursor of Cer. The effects of SMS deficiency on stratum corneum (SC) barrier function and SC lamellar structure are unknown. In this report, permeation of hydrophilic and lipophilic compounds through full-thickness skin or stripped skin of SMS2-knockout (KO) and wild-type (WT) mice was examined. Furthermore, small-angle and wide-angle X-ray scattering (SAXS and WAXS) measurements of the SC were performed as a function of temperature to analyze the lamellar structure and hydrocarbon chain packing, where a SC sample was changed from 10 °C to 120 °C at 2 °C/min and the X-ray diffraction profile in the small-angle region and the wide-angle region was observed. Skin permeability of the hydrophilic compound increased significantly for SMS2-KO mice when compared with that of WT mice. In contrast, no difference was observed in the penetration of lipophilic compounds in the skin of both SMS2-KO and WT mice. In SC of SMS2-KO mice, two sharp </span>SAXS peaks were observed due to the lamellar structure with a repetition period of 4.8 nm. The WAXS revealed that the intensity ratio </span></span><em>R</em><sub>0.42/0.37</sub> of the 0.42 nm peak at 2.4 nm<sup>–1</sup> to the 0.37 nm peak at 2.7 nm<sup>–1</sup> was smaller in the SMS2-KO mouse than in the WT mouse. Due to the temperature dependence of the WAXS, the peaks of 2.4 and 2.7 nm<sup>−1</sup> remained until the higher temperatures in SMS2-KO mouse SC than those in WT mouse SC. The results of X-ray diffraction suggest that deficiency of SMS2 may cause the appearance of highly ordered structures of SC, which in turn may reduce the barrier function of SC.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"249 ","pages":"Article 105255"},"PeriodicalIF":3.4000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009308422000834","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Sphingomyelin synthase (SMS) synthesizes sphingomyelin (SM) from ceramide (Cer), a precursor of Cer. The effects of SMS deficiency on stratum corneum (SC) barrier function and SC lamellar structure are unknown. In this report, permeation of hydrophilic and lipophilic compounds through full-thickness skin or stripped skin of SMS2-knockout (KO) and wild-type (WT) mice was examined. Furthermore, small-angle and wide-angle X-ray scattering (SAXS and WAXS) measurements of the SC were performed as a function of temperature to analyze the lamellar structure and hydrocarbon chain packing, where a SC sample was changed from 10 °C to 120 °C at 2 °C/min and the X-ray diffraction profile in the small-angle region and the wide-angle region was observed. Skin permeability of the hydrophilic compound increased significantly for SMS2-KO mice when compared with that of WT mice. In contrast, no difference was observed in the penetration of lipophilic compounds in the skin of both SMS2-KO and WT mice. In SC of SMS2-KO mice, two sharp SAXS peaks were observed due to the lamellar structure with a repetition period of 4.8 nm. The WAXS revealed that the intensity ratio R0.42/0.37 of the 0.42 nm peak at 2.4 nm–1 to the 0.37 nm peak at 2.7 nm–1 was smaller in the SMS2-KO mouse than in the WT mouse. Due to the temperature dependence of the WAXS, the peaks of 2.4 and 2.7 nm−1 remained until the higher temperatures in SMS2-KO mouse SC than those in WT mouse SC. The results of X-ray diffraction suggest that deficiency of SMS2 may cause the appearance of highly ordered structures of SC, which in turn may reduce the barrier function of SC.

鞘磷脂合酶2缺陷小鼠角质层功能和结构的调控
鞘磷脂合成酶(SMS)以神经酰胺(Cer)为前体合成鞘磷脂(SM)。SMS缺乏对角质层(SC)屏障功能和SC层状结构的影响尚不清楚。在本报告中,研究了亲水和亲脂化合物在sms2敲除(KO)和野生型(WT)小鼠全层皮肤或剥离皮肤中的渗透情况。此外,通过对SC样品进行小角和广角x射线散射(SAXS和WAXS)测量,以温度为函数分析SC样品的层状结构和烃链堆积,其中SC样品在2°C/min下从10°C变化到120°C,并观察了小角区域和广角区域的x射线衍射剖面。与WT小鼠相比,SMS2-KO小鼠的皮肤渗透性显著增加。相比之下,SMS2-KO和WT小鼠皮肤中亲脂化合物的渗透没有观察到差异。在SMS2-KO小鼠的SC中,由于层状结构,可以观察到两个尖锐的SAXS峰,重复周期为4.8 nm。WAXS显示SMS2-KO小鼠2.4 nm - 1处0.42 nm峰与2.7 nm - 1处0.37 nm峰的强度比R0.42/0.37小于WT小鼠。由于WAXS对温度的依赖性,在SMS2- ko小鼠SC中,2.4和2.7 nm−1的峰一直存在,直到温度高于WT小鼠SC。x射线衍射结果表明,缺乏SMS2可能导致SC出现高度有序的结构,从而降低SC的势垒功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry and Physics of Lipids
Chemistry and Physics of Lipids 生物-生化与分子生物学
CiteScore
7.60
自引率
2.90%
发文量
50
审稿时长
40 days
期刊介绍: Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications. Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信