Paulina Kober, Julia Rymuza, Szymon Baluszek, Maria Maksymowicz, Aleksandra Nyc, Beata J Mossakowska, Grzegorz Zieliński, Jacek Kunicki, Mateusz Bujko
{"title":"DNA Methylation Pattern in Somatotroph Pituitary Neuroendocrine Tumors.","authors":"Paulina Kober, Julia Rymuza, Szymon Baluszek, Maria Maksymowicz, Aleksandra Nyc, Beata J Mossakowska, Grzegorz Zieliński, Jacek Kunicki, Mateusz Bujko","doi":"10.1159/000533692","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Growth hormone secretion by sporadic somatotroph neuroendocrine pituitary tumors (PitNETs) is a major cause of acromegaly. These tumors are relatively heterogenous in terms of histopathological and molecular features. Our previous transcriptomic profiling of somatotroph tumors revealed three distinct molecular subtypes. This study aimed to investigate the difference in DNA methylation patterns in subtypes of somatotroph PitNETs and its role in distinctive gene expression.</p><p><strong>Methods: </strong>Genome-wide DNA methylation was investigated in 48 somatotroph PitNETs with EPIC microarrays. Gene expression was assessed with RNAseq. Bisulfite pyrosequencing and qRT-PCR were used for verifying the results of DNA methylation and gene expression.</p><p><strong>Results: </strong>Clustering tumor samples based on methylation data reflected the transcriptome-related classification. Subtype 1 tumors are densely granulated without GNAS mutation, characterized by high expression of NR5A1 (SF-1) and GIPR. The expression of both genes is correlated with specific methylation of the gene body and promoter. This subtype has a lower methylation level of 5' gene regions and CpG islands than the remaining tumors. Subtype 2 PitNETs are densely granulated and frequently GNAS-mutated, while those in subtype 3 are mainly sparsely granulated. Methylation/expression analysis indicates that ∼50% genes located in differentially methylated regions are those differentially expressed between tumor subtypes. Correlation analysis revealed DNA methylation-controlled genes, including CDKN1B, CCND2, EBF3, CDH4, CDH12, MGMT, STAT5A, PLXND1, PTPRE, and MMP16, and genes encoding ion channels and semaphorins.</p><p><strong>Conclusion: </strong>DNA methylation profiling confirmed the existence of three molecular subtypes of somatotroph PitNETs. High expression of NR5A1 and GIPR in subtype 1 tumors is correlated with specific methylation of both genes.</p>","PeriodicalId":19117,"journal":{"name":"Neuroendocrinology","volume":" ","pages":"51-63"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroendocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000533692","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Growth hormone secretion by sporadic somatotroph neuroendocrine pituitary tumors (PitNETs) is a major cause of acromegaly. These tumors are relatively heterogenous in terms of histopathological and molecular features. Our previous transcriptomic profiling of somatotroph tumors revealed three distinct molecular subtypes. This study aimed to investigate the difference in DNA methylation patterns in subtypes of somatotroph PitNETs and its role in distinctive gene expression.
Methods: Genome-wide DNA methylation was investigated in 48 somatotroph PitNETs with EPIC microarrays. Gene expression was assessed with RNAseq. Bisulfite pyrosequencing and qRT-PCR were used for verifying the results of DNA methylation and gene expression.
Results: Clustering tumor samples based on methylation data reflected the transcriptome-related classification. Subtype 1 tumors are densely granulated without GNAS mutation, characterized by high expression of NR5A1 (SF-1) and GIPR. The expression of both genes is correlated with specific methylation of the gene body and promoter. This subtype has a lower methylation level of 5' gene regions and CpG islands than the remaining tumors. Subtype 2 PitNETs are densely granulated and frequently GNAS-mutated, while those in subtype 3 are mainly sparsely granulated. Methylation/expression analysis indicates that ∼50% genes located in differentially methylated regions are those differentially expressed between tumor subtypes. Correlation analysis revealed DNA methylation-controlled genes, including CDKN1B, CCND2, EBF3, CDH4, CDH12, MGMT, STAT5A, PLXND1, PTPRE, and MMP16, and genes encoding ion channels and semaphorins.
Conclusion: DNA methylation profiling confirmed the existence of three molecular subtypes of somatotroph PitNETs. High expression of NR5A1 and GIPR in subtype 1 tumors is correlated with specific methylation of both genes.
期刊介绍:
''Neuroendocrinology'' publishes papers reporting original research in basic and clinical neuroendocrinology. The journal explores the complex interactions between neuronal networks and endocrine glands (in some instances also immunecells) in both central and peripheral nervous systems. Original contributions cover all aspects of the field, from molecular and cellular neuroendocrinology, physiology, pharmacology, and the neuroanatomy of neuroendocrine systems to neuroendocrine correlates of behaviour, clinical neuroendocrinology and neuroendocrine cancers. Readers also benefit from reviews by noted experts, which highlight especially active areas of current research, and special focus editions of topical interest.