{"title":"Clinical Consequences of Metabolic Acidosis—Muscle","authors":"Jim Q. Ho , Matthew K. Abramowitz","doi":"10.1053/j.ackd.2022.04.010","DOIUrl":null,"url":null,"abstract":"<div><p><span>Metabolic acidosis<span> is common in people with chronic kidney disease and can contribute to functional decline, morbidity, and mortality. One avenue through which metabolic acidosis can result in these adverse clinical outcomes is by negatively impacting </span></span>skeletal muscle<span>; this can occur through several pathways. First, metabolic acidosis promotes protein degradation<span> and impairs protein synthesis<span>, which lead to muscle breakdown. Second, metabolic acidosis hinders mitochondrial function, which decreases oxidative phosphorylation and reduces energy production. Third, metabolic acidosis directly limits muscle contraction. The purpose of this review is to examine the specific mechanisms of each pathway through which metabolic acidosis affects muscle, the impact of metabolic acidosis on physical function, and the effect of treating metabolic acidosis on functional outcomes.</span></span></span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1548559522000787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2
Abstract
Metabolic acidosis is common in people with chronic kidney disease and can contribute to functional decline, morbidity, and mortality. One avenue through which metabolic acidosis can result in these adverse clinical outcomes is by negatively impacting skeletal muscle; this can occur through several pathways. First, metabolic acidosis promotes protein degradation and impairs protein synthesis, which lead to muscle breakdown. Second, metabolic acidosis hinders mitochondrial function, which decreases oxidative phosphorylation and reduces energy production. Third, metabolic acidosis directly limits muscle contraction. The purpose of this review is to examine the specific mechanisms of each pathway through which metabolic acidosis affects muscle, the impact of metabolic acidosis on physical function, and the effect of treating metabolic acidosis on functional outcomes.