Diego M. Vazquez , Cynthia A. Awruch , Luis O. Lucifora , Juan M. Díaz de Astarloa , Ezequiel Mabragaña
{"title":"Embryonic development timeline in skates (Chondrichthyes: Rajiformes): Sympterygia acuta as the first case study in the family Arhynchobatidae","authors":"Diego M. Vazquez , Cynthia A. Awruch , Luis O. Lucifora , Juan M. Díaz de Astarloa , Ezequiel Mabragaña","doi":"10.1016/j.zool.2022.126057","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Oviparous<span><span> elasmobranch embryos (Chondrichthyes) have been the focus of several embryological studies; they are useful models for studying early </span>ontogeny in vertebrates, as can help explore the existence of common developmental patterns among species. Skates (Rajiformes) are the most speciose order of oviparous elasmobranchs, however, few studies are focused on </span></span>embryo development<span> and only based on one skate family: Rajidae. Here, we extended the study of embryo development to other skate family, Arhynchobatidae, which represent about 1/3 of all skate species. Three adult female bignose fanskates (</span></span><em>Sympterygia acuta</em>) were held in captivity in order to provide the first complete embryonic development timeline for any species within the Arhynchobatidae family. Our results allowed further comparisons at the embryonic scale of different oviparous elasmobranch families, providing an updated cross-species overview of the early ontogeny. Incubation in <em>S. acuta</em> lasted 97 ± 1.4 days at 11–21.7 °C, and hatching size was 93.2 ± 0.2 mm in total length and 49.2 ± 0.3 mm in disc width. Early embryos of <em>S. acuta</em><span> were anatomically similar to other oviparous elasmobranch embryos, with several structures appearing at the same time, but late embryonic development was comparatively delayed. The late resorption<span><span> of both the external yolk sac and the </span>external gill filaments, and also the delay in the slit opening could indicate a low metabolic demand in </span></span><em>S. acuta</em><span>, which would probably be coupled with its seasonal reproductive cycle<span>. Some structures such as external gill filaments and claspers appeared at a similar time in some species of Rajidae and also in Arhynchobatidae, but at different times in species of the same family, showing an inconsistency also found within shark families. Although the sequential scheme remained relatively constant, small heterochronies would be present within skates, within sharks, and also between skates and sharks.</span></span></p></div>","PeriodicalId":49330,"journal":{"name":"Zoology","volume":"155 ","pages":"Article 126057"},"PeriodicalIF":1.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944200622000587","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oviparous elasmobranch embryos (Chondrichthyes) have been the focus of several embryological studies; they are useful models for studying early ontogeny in vertebrates, as can help explore the existence of common developmental patterns among species. Skates (Rajiformes) are the most speciose order of oviparous elasmobranchs, however, few studies are focused on embryo development and only based on one skate family: Rajidae. Here, we extended the study of embryo development to other skate family, Arhynchobatidae, which represent about 1/3 of all skate species. Three adult female bignose fanskates (Sympterygia acuta) were held in captivity in order to provide the first complete embryonic development timeline for any species within the Arhynchobatidae family. Our results allowed further comparisons at the embryonic scale of different oviparous elasmobranch families, providing an updated cross-species overview of the early ontogeny. Incubation in S. acuta lasted 97 ± 1.4 days at 11–21.7 °C, and hatching size was 93.2 ± 0.2 mm in total length and 49.2 ± 0.3 mm in disc width. Early embryos of S. acuta were anatomically similar to other oviparous elasmobranch embryos, with several structures appearing at the same time, but late embryonic development was comparatively delayed. The late resorption of both the external yolk sac and the external gill filaments, and also the delay in the slit opening could indicate a low metabolic demand in S. acuta, which would probably be coupled with its seasonal reproductive cycle. Some structures such as external gill filaments and claspers appeared at a similar time in some species of Rajidae and also in Arhynchobatidae, but at different times in species of the same family, showing an inconsistency also found within shark families. Although the sequential scheme remained relatively constant, small heterochronies would be present within skates, within sharks, and also between skates and sharks.
期刊介绍:
Zoology is a journal devoted to experimental and comparative animal science. It presents a common forum for all scientists who take an explicitly organism oriented and integrative approach to the study of animal form, function, development and evolution.
The journal invites papers that take a comparative or experimental approach to behavior and neurobiology, functional morphology, evolution and development, ecological physiology, and cell biology. Due to the increasing realization that animals exist only within a partnership with symbionts, Zoology encourages submissions of papers focused on the analysis of holobionts or metaorganisms as associations of the macroscopic host in synergistic interdependence with numerous microbial and eukaryotic species.
The editors and the editorial board are committed to presenting science at its best. The editorial team is regularly adjusting editorial practice to the ever changing field of animal biology.