{"title":"A flexible framework for anomaly Detection via dimensionality reduction.","authors":"Alireza Vafaei Sadr, Bruce A Bassett, M Kunz","doi":"10.1007/s00521-021-05839-5","DOIUrl":null,"url":null,"abstract":"<p><p>Anomaly detection is challenging, especially for large datasets in high dimensions. Here, we explore a general anomaly detection framework based on dimensionality reduction and unsupervised clustering. DRAMA is released as a general python package that implements the general framework with a wide range of built-in options. This approach identifies the primary prototypes in the data with anomalies detected by their large distances from the prototypes, either in the latent space or in the original, high-dimensional space. DRAMA is tested on a wide variety of simulated and real datasets, in up to 3000 dimensions, and is found to be robust and highly competitive with commonly used anomaly detection algorithms, especially in high dimensions. The flexibility of the DRAMA framework allows for significant optimization once some examples of anomalies are available, making it ideal for online anomaly detection, active learning, and highly unbalanced datasets. Besides, DRAMA naturally provides clustering of outliers for subsequent analysis.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 2","pages":"1157-1167"},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00521-021-05839-5","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-021-05839-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 6
Abstract
Anomaly detection is challenging, especially for large datasets in high dimensions. Here, we explore a general anomaly detection framework based on dimensionality reduction and unsupervised clustering. DRAMA is released as a general python package that implements the general framework with a wide range of built-in options. This approach identifies the primary prototypes in the data with anomalies detected by their large distances from the prototypes, either in the latent space or in the original, high-dimensional space. DRAMA is tested on a wide variety of simulated and real datasets, in up to 3000 dimensions, and is found to be robust and highly competitive with commonly used anomaly detection algorithms, especially in high dimensions. The flexibility of the DRAMA framework allows for significant optimization once some examples of anomalies are available, making it ideal for online anomaly detection, active learning, and highly unbalanced datasets. Besides, DRAMA naturally provides clustering of outliers for subsequent analysis.
期刊介绍:
Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems.
All items relevant to building practical systems are within its scope, including but not limited to:
-adaptive computing-
algorithms-
applicable neural networks theory-
applied statistics-
architectures-
artificial intelligence-
benchmarks-
case histories of innovative applications-
fuzzy logic-
genetic algorithms-
hardware implementations-
hybrid intelligent systems-
intelligent agents-
intelligent control systems-
intelligent diagnostics-
intelligent forecasting-
machine learning-
neural networks-
neuro-fuzzy systems-
pattern recognition-
performance measures-
self-learning systems-
software simulations-
supervised and unsupervised learning methods-
system engineering and integration.
Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.