A recurrent single-exon deletion in TBCK might be under-recognized in patients with infantile hypotonia and psychomotor delay.

IF 3.3 2区 医学 Q2 GENETICS & HEREDITY
Human Mutation Pub Date : 2022-12-01 Epub Date: 2022-11-06 DOI:10.1002/humu.24497
Hongzheng Dai, Wenmiao Zhu, Bo Yuan, Nicole Walley, Kelly Schoch, Yong-Hui Jiang, John A Phillips, Melissa S Jones, Pengfei Liu, David R Murdock, Lindsay C Burrage, Brendan Lee, Jill A Rosenfeld, Rui Xiao
{"title":"A recurrent single-exon deletion in TBCK might be under-recognized in patients with infantile hypotonia and psychomotor delay.","authors":"Hongzheng Dai, Wenmiao Zhu, Bo Yuan, Nicole Walley, Kelly Schoch, Yong-Hui Jiang, John A Phillips, Melissa S Jones, Pengfei Liu, David R Murdock, Lindsay C Burrage, Brendan Lee, Jill A Rosenfeld, Rui Xiao","doi":"10.1002/humu.24497","DOIUrl":null,"url":null,"abstract":"<p><p>Advanced bioinformatics algorithms allow detection of multiple-exon copy-number variations (CNVs) from exome sequencing (ES) data, while detection of single-exon CNVs remains challenging. A retrospective review of Baylor Genetics' clinical ES patient cohort identified four individuals with homozygous single-exon deletions of TBCK (exon 23, NM_001163435.2), a gene associated with an autosomal recessive neurodevelopmental phenotype. To evaluate the prevalence of this deletion and its contribution to disease, we retrospectively analyzed single nucleotide polymorphism (SNP) array data for 8194 individuals undergoing ES, followed by PCR confirmation and RT-PCR on individuals carrying homozygous or heterozygous exon 23 TBCK deletions. A fifth individual was diagnosed with the TBCK-related disorder due to a heterozygous exon 23 deletion in trans with a c.1860+1G>A (NM_001163435.2) pathogenic variant, and three additional heterozygous carriers were identified. Affected individuals and carriers were from diverse ethnicities including European Caucasian, South Asian, Middle Eastern, Hispanic American and African American, with only one family reporting consanguinity. RT-PCR revealed two out-of-frame transcripts related to the exon 23 deletion. Our results highlight the importance of identifying single-exon deletions in clinical ES, especially for genes carrying recurrent deletions. For patients with early-onset hypotonia and psychomotor delay, this single-exon TBCK deletion might be under-recognized due to technical limitations of ES.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":"43 12","pages":"1816-1823"},"PeriodicalIF":3.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9772143/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Mutation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/humu.24497","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Advanced bioinformatics algorithms allow detection of multiple-exon copy-number variations (CNVs) from exome sequencing (ES) data, while detection of single-exon CNVs remains challenging. A retrospective review of Baylor Genetics' clinical ES patient cohort identified four individuals with homozygous single-exon deletions of TBCK (exon 23, NM_001163435.2), a gene associated with an autosomal recessive neurodevelopmental phenotype. To evaluate the prevalence of this deletion and its contribution to disease, we retrospectively analyzed single nucleotide polymorphism (SNP) array data for 8194 individuals undergoing ES, followed by PCR confirmation and RT-PCR on individuals carrying homozygous or heterozygous exon 23 TBCK deletions. A fifth individual was diagnosed with the TBCK-related disorder due to a heterozygous exon 23 deletion in trans with a c.1860+1G>A (NM_001163435.2) pathogenic variant, and three additional heterozygous carriers were identified. Affected individuals and carriers were from diverse ethnicities including European Caucasian, South Asian, Middle Eastern, Hispanic American and African American, with only one family reporting consanguinity. RT-PCR revealed two out-of-frame transcripts related to the exon 23 deletion. Our results highlight the importance of identifying single-exon deletions in clinical ES, especially for genes carrying recurrent deletions. For patients with early-onset hypotonia and psychomotor delay, this single-exon TBCK deletion might be under-recognized due to technical limitations of ES.

Abstract Image

在婴儿期张力低下和精神运动迟缓的患者中,TBCK的复发性单外显子缺失可能未被充分认识。
先进的生物信息学算法允许从外显子测序(ES)数据中检测多外显子拷贝数变异(cnv),而单外显子拷贝数变异的检测仍然具有挑战性。一项对Baylor Genetics临床ES患者队列的回顾性研究发现,TBCK纯合单外显子缺失(外显子23,NM_001163435.2)的4例患者,该基因与常染色体隐性神经发育表型相关。为了评估这种缺失的患病率及其对疾病的贡献,我们回顾性分析了8194例ES患者的单核苷酸多态性(SNP)阵列数据,然后对携带纯合或杂合外显子23 TBCK缺失的个体进行PCR确认和RT-PCR。第5例患者被诊断为tbck相关疾病,原因是反式外显子23杂合缺失,致病性变异为c.1860+1G>A (NM_001163435.2),另外还发现了3个杂合携带者。受影响的个体和携带者来自不同的种族,包括欧洲高加索人、南亚人、中东人、西班牙裔美国人和非洲裔美国人,只有一个家庭报告有血缘关系。RT-PCR显示了两个与23号外显子缺失相关的框外转录本。我们的研究结果强调了在临床ES中识别单外显子缺失的重要性,特别是对于携带复发性缺失的基因。对于早发性张力低下和精神运动迟缓的患者,由于ES的技术限制,这种单外显子TBCK缺失可能未被充分认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Mutation
Human Mutation 医学-遗传学
CiteScore
8.40
自引率
5.10%
发文量
190
审稿时长
2 months
期刊介绍: Human Mutation is a peer-reviewed journal that offers publication of original Research Articles, Methods, Mutation Updates, Reviews, Database Articles, Rapid Communications, and Letters on broad aspects of mutation research in humans. Reports of novel DNA variations and their phenotypic consequences, reports of SNPs demonstrated as valuable for genomic analysis, descriptions of new molecular detection methods, and novel approaches to clinical diagnosis are welcomed. Novel reports of gene organization at the genomic level, reported in the context of mutation investigation, may be considered. The journal provides a unique forum for the exchange of ideas, methods, and applications of interest to molecular, human, and medical geneticists in academic, industrial, and clinical research settings worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信