{"title":"Automated data extraction tool (DET) for external applications in radiotherapy","authors":"Mruga Gurjar , Jesper Lindberg , Thomas Björk-Eriksson , Caroline Olsson","doi":"10.1016/j.tipsro.2022.12.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>Oncological Information Systems (OIS) manage information in radiotherapy (RT) departments. Due to database structure limitations, stored information can rarely be directly used except for vendor-specific purposes. Our aim is to enable the use of such data in various external applications by creating a tool for automatic data extraction, cleaning and formatting. Methods and materials: We used OIS data from a nine-linac RT department in Sweden (70 weeks, 2015–16). Extracted data included patients’ referrals and appointments with details for RT sub-tasks. The data extraction tool to prepare the data for external use was built in C# programming language. It used excel-automation queries to remove unassigned/duplicated values, substitute missing data and perform application-specific calculations. Descriptive statistics were used to verify the output with the manually prepared dataset from the corresponding time period. Results: From the initial raw data, 2030 (51 %)/907 (23 %) patients had known curative and palliative treatment intent for 84 different cancer diagnoses. After removal of incomplete entries, 373 (10 %) patients had unknown treatment intents which were substituted based on the known curative/palliative ratio. Automatically- and manuallyprepared datasets differed < 1 % for Mould, Treatment planning, Quality assurance and ± 5 % for Fractions and Magnetic resonance imaging with overestimations in 80/140 (57 %) entries by the tool. Conclusion: We successfully implemented a software tool to prepare ready-to-use OIS datasets for external applications. Our evaluations showed overall results close to the manually-prepared dataset. The time taken to prepare the dataset using our automated strategy can reduce the time for manual preparation from weeks to seconds.</p></div>","PeriodicalId":36328,"journal":{"name":"Technical Innovations and Patient Support in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842687/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Innovations and Patient Support in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240563242200049X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Nursing","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Oncological Information Systems (OIS) manage information in radiotherapy (RT) departments. Due to database structure limitations, stored information can rarely be directly used except for vendor-specific purposes. Our aim is to enable the use of such data in various external applications by creating a tool for automatic data extraction, cleaning and formatting. Methods and materials: We used OIS data from a nine-linac RT department in Sweden (70 weeks, 2015–16). Extracted data included patients’ referrals and appointments with details for RT sub-tasks. The data extraction tool to prepare the data for external use was built in C# programming language. It used excel-automation queries to remove unassigned/duplicated values, substitute missing data and perform application-specific calculations. Descriptive statistics were used to verify the output with the manually prepared dataset from the corresponding time period. Results: From the initial raw data, 2030 (51 %)/907 (23 %) patients had known curative and palliative treatment intent for 84 different cancer diagnoses. After removal of incomplete entries, 373 (10 %) patients had unknown treatment intents which were substituted based on the known curative/palliative ratio. Automatically- and manuallyprepared datasets differed < 1 % for Mould, Treatment planning, Quality assurance and ± 5 % for Fractions and Magnetic resonance imaging with overestimations in 80/140 (57 %) entries by the tool. Conclusion: We successfully implemented a software tool to prepare ready-to-use OIS datasets for external applications. Our evaluations showed overall results close to the manually-prepared dataset. The time taken to prepare the dataset using our automated strategy can reduce the time for manual preparation from weeks to seconds.