Ting Zheng, Meiling Jing, Tao Gong, Jiangchuan Yan, Xiaowan Wang, Mai Xu, Xuedong Zhou, Jumei Zeng, Yuqing Li
{"title":"Regulatory mechanisms of exopolysaccharide synthesis and biofilm formation in Streptococcus mutans.","authors":"Ting Zheng, Meiling Jing, Tao Gong, Jiangchuan Yan, Xiaowan Wang, Mai Xu, Xuedong Zhou, Jumei Zeng, Yuqing Li","doi":"10.1080/20002297.2023.2225257","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dental caries is a chronic, multifactorial and biofilm-mediated oral bacterial infection affecting almost every age group and every geographical region. <i>Streptococcus mutans</i> is considered an important pathogen responsible for the initiation and development of dental caries. It produces exopolysaccharides <i>in situ</i> to promote the colonization of cariogenic bacteria and coordinate dental biofilm development.</p><p><strong>Objective: </strong>The understanding of the regulatory mechanism of <i>S. mutans</i> biofilm formation can provide a theoretical basis for the prevention and treatment of caries.</p><p><strong>Design: </strong>At present, an increasing number of studies have identified many regulatory systems in <i>S. mutans</i> that regulate biofilm formation, including second messengers (e.g. c-di-AMP, Ap4A), transcription factors (e.g. EpsR, RcrR, StsR, AhrC, FruR), two-component systems (e.g. CovR, VicR), small RNA (including sRNA0426, srn92532, and srn133489), acetylation modifications (e.g. ActG), CRISPR-associated proteins (e.g. Cas3), PTS systems (e.g. EIIAB), quorum-sensing signaling system (e.g. LuxS), enzymes (including Dex, YidC, CopZ, EzrA, lmrB, SprV, RecA, PdxR, MurI) and small-molecule metabolites.</p><p><strong>Results: </strong>This review summarizes the recent progress in the molecular regulatory mechanisms of exopolysaccharides synthesis and biofilm formation in <i>S. mutans</i>.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"15 1","pages":"2225257"},"PeriodicalIF":3.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281425/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/20002297.2023.2225257","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Background: Dental caries is a chronic, multifactorial and biofilm-mediated oral bacterial infection affecting almost every age group and every geographical region. Streptococcus mutans is considered an important pathogen responsible for the initiation and development of dental caries. It produces exopolysaccharides in situ to promote the colonization of cariogenic bacteria and coordinate dental biofilm development.
Objective: The understanding of the regulatory mechanism of S. mutans biofilm formation can provide a theoretical basis for the prevention and treatment of caries.
Design: At present, an increasing number of studies have identified many regulatory systems in S. mutans that regulate biofilm formation, including second messengers (e.g. c-di-AMP, Ap4A), transcription factors (e.g. EpsR, RcrR, StsR, AhrC, FruR), two-component systems (e.g. CovR, VicR), small RNA (including sRNA0426, srn92532, and srn133489), acetylation modifications (e.g. ActG), CRISPR-associated proteins (e.g. Cas3), PTS systems (e.g. EIIAB), quorum-sensing signaling system (e.g. LuxS), enzymes (including Dex, YidC, CopZ, EzrA, lmrB, SprV, RecA, PdxR, MurI) and small-molecule metabolites.
Results: This review summarizes the recent progress in the molecular regulatory mechanisms of exopolysaccharides synthesis and biofilm formation in S. mutans.
期刊介绍:
As the first Open Access journal in its field, the Journal of Oral Microbiology aims to be an influential source of knowledge on the aetiological agents behind oral infectious diseases. The journal is an international forum for original research on all aspects of ''oral health''. Articles which seek to understand ''oral health'' through exploration of the pathogenesis, virulence, host-parasite interactions, and immunology of oral infections are of particular interest. However, the journal also welcomes work that addresses the global agenda of oral infectious diseases and articles that present new strategies for treatment and prevention or improvements to existing strategies.
Topics: ''oral health'', microbiome, genomics, host-pathogen interactions, oral infections, aetiologic agents, pathogenesis, molecular microbiology systemic diseases, ecology/environmental microbiology, treatment, diagnostics, epidemiology, basic oral microbiology, and taxonomy/systematics.
Article types: original articles, notes, review articles, mini-reviews and commentaries