Current status and development of neutron radiation for biophysical applications in Colombia.

IF 4.9 Q1 BIOPHYSICS
J Alfonso Leyva, Edwin Munévar
{"title":"Current status and development of neutron radiation for biophysical applications in Colombia.","authors":"J Alfonso Leyva,&nbsp;Edwin Munévar","doi":"10.1007/s12551-023-01079-0","DOIUrl":null,"url":null,"abstract":"<p><p>In Colombia, medical physics started formally about 3 decades ago. Two master's programs in medical physics initiated activities at two different universities. In particular, the master's program at the Pontificia Universidad Javeriana has been underway since 2012, and taking into account its projections, a team was established in 2015 in collaboration with the Universidad Distrital Francisco José de Caldas to conduct basic research on cancer treatment using neutron capture therapy (NCT). The primary goal of our initiative is to create the infrastructure required to adapt new technologies in our universities in the future. The long-term objective is to use neutron radiation to study not only NCT but also biomolecules, membranes, and materials. This will require the commissioning of an actual nuclear facility. Our group has been exclusively focused on carrying out calculations with GEANT4 because of its characteristics as open-source software, its accessibility, and its ample worldwide use and validation in the particle physics, nuclear physics, and medical physics communities. In this work, we present some results of our preliminary design for the ion accelerator column of a compact neutron generator. Also, we present the characterization of the kinematical and dose distributions of boron neutron capture processes using Geant4.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480130/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-023-01079-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

In Colombia, medical physics started formally about 3 decades ago. Two master's programs in medical physics initiated activities at two different universities. In particular, the master's program at the Pontificia Universidad Javeriana has been underway since 2012, and taking into account its projections, a team was established in 2015 in collaboration with the Universidad Distrital Francisco José de Caldas to conduct basic research on cancer treatment using neutron capture therapy (NCT). The primary goal of our initiative is to create the infrastructure required to adapt new technologies in our universities in the future. The long-term objective is to use neutron radiation to study not only NCT but also biomolecules, membranes, and materials. This will require the commissioning of an actual nuclear facility. Our group has been exclusively focused on carrying out calculations with GEANT4 because of its characteristics as open-source software, its accessibility, and its ample worldwide use and validation in the particle physics, nuclear physics, and medical physics communities. In this work, we present some results of our preliminary design for the ion accelerator column of a compact neutron generator. Also, we present the characterization of the kinematical and dose distributions of boron neutron capture processes using Geant4.

Abstract Image

Abstract Image

Abstract Image

哥伦比亚中子辐射生物物理应用的现状与发展。
在哥伦比亚,医学物理学大约在30年前正式起步。两个医学物理学硕士项目在两所不同的大学开展活动。特别是,圣座大学(Pontificia Universidad Javeriana)的硕士项目自2012年以来一直在进行中,并考虑到其预测,于2015年与圣座大学(Universidad Distrital Francisco jos de Caldas)合作成立了一个团队,开展中子俘获疗法(NCT)癌症治疗的基础研究。我们倡议的主要目标是创建未来大学适应新技术所需的基础设施。长期目标是利用中子辐射不仅研究NCT,而且研究生物分子、膜和材料。这将需要一个实际的核设施投入使用。我们的团队一直专注于使用GEANT4进行计算,因为它是开源软件的特点,它的可访问性,以及它在粒子物理、核物理和医学物理社区中的广泛使用和验证。本文介绍了小型中子发生器离子加速柱的初步设计结果。此外,我们还利用Geant4对硼中子捕获过程的运动学和剂量分布进行了表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical reviews
Biophysical reviews Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
8.90
自引率
0.00%
发文量
93
期刊介绍: Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信