{"title":"The Curious Case of the Cross-Sectional Correlation.","authors":"E L Hamaker","doi":"10.1080/00273171.2022.2155930","DOIUrl":null,"url":null,"abstract":"<p><p>The cross-sectional correlation is frequently used to summarize psychological data, and can be considered the basis for many statistical techniques. However, the work of Peter Molenaar on <i>ergodicity</i> has raised concerns about the meaning and utility of this measure, especially when the interest is in discovering general laws that apply to (all) individuals. Through using Cattell's databox and adopting a multilevel perspective, this paper provides a closer look at the cross-sectional correlation, with the goal to better understand its meaning when ergodicity is absent. An analytical expression is presented that shows the cross-sectional correlation is a function of the between-person correlation (based on person-specific means), and the within-person correlation (based on individuals' temporal deviations from their person-specific means). Two curiosities related to this expression of the cross-sectional correlation are elaborated on, that is: a) the difference between the within-person correlation and the (average) person-specific correlation; and b) the unexpected scenarios that can arise because the cross-sectional correlation is a weighted sum rather than a weighted average of the between-person and within-person correlations. Seven specific examples are presented to illustrate various ways in which these two curiosities may combine; R code is provided, which allows researchers to investigate additional scenarios.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1111-1122"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2022.2155930","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The cross-sectional correlation is frequently used to summarize psychological data, and can be considered the basis for many statistical techniques. However, the work of Peter Molenaar on ergodicity has raised concerns about the meaning and utility of this measure, especially when the interest is in discovering general laws that apply to (all) individuals. Through using Cattell's databox and adopting a multilevel perspective, this paper provides a closer look at the cross-sectional correlation, with the goal to better understand its meaning when ergodicity is absent. An analytical expression is presented that shows the cross-sectional correlation is a function of the between-person correlation (based on person-specific means), and the within-person correlation (based on individuals' temporal deviations from their person-specific means). Two curiosities related to this expression of the cross-sectional correlation are elaborated on, that is: a) the difference between the within-person correlation and the (average) person-specific correlation; and b) the unexpected scenarios that can arise because the cross-sectional correlation is a weighted sum rather than a weighted average of the between-person and within-person correlations. Seven specific examples are presented to illustrate various ways in which these two curiosities may combine; R code is provided, which allows researchers to investigate additional scenarios.
期刊介绍:
Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.