Edge Detection Method Based on Nonlinear Spiking Neural Systems.

IF 6.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ronghao Xian, Rikong Lugu, Hong Peng, Qian Yang, Xiaohui Luo, Jun Wang
{"title":"Edge Detection Method Based on Nonlinear Spiking Neural Systems.","authors":"Ronghao Xian,&nbsp;Rikong Lugu,&nbsp;Hong Peng,&nbsp;Qian Yang,&nbsp;Xiaohui Luo,&nbsp;Jun Wang","doi":"10.1142/S0129065722500605","DOIUrl":null,"url":null,"abstract":"<p><p>Nonlinear spiking neural P (NSNP) systems are a class of neural-like computational models inspired from the nonlinear mechanism of spiking neurons. NSNP systems have a distinguishing feature: nonlinear spiking mechanism. To handle edge detection of images, this paper proposes a variant, nonlinear spiking neural P (NSNP) systems with two outputs (TO), termed as NSNP-TO systems. Based on NSNP-TO system, an edge detection framework is developed, termed as ED-NSNP detector. The detection ability of ED-NSNP detector relies on two convolutional kernels. To obtain good detection performance, particle swarm optimization (PSO) is used to optimize the parameters of the two convolutional kernels. The proposed ED-NSNP detector is evaluated on several open benchmark images and compared with seven baseline edge detection methods. The comparison results indicate the availability and effectiveness of the proposed ED-NSNP detector.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065722500605","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 6

Abstract

Nonlinear spiking neural P (NSNP) systems are a class of neural-like computational models inspired from the nonlinear mechanism of spiking neurons. NSNP systems have a distinguishing feature: nonlinear spiking mechanism. To handle edge detection of images, this paper proposes a variant, nonlinear spiking neural P (NSNP) systems with two outputs (TO), termed as NSNP-TO systems. Based on NSNP-TO system, an edge detection framework is developed, termed as ED-NSNP detector. The detection ability of ED-NSNP detector relies on two convolutional kernels. To obtain good detection performance, particle swarm optimization (PSO) is used to optimize the parameters of the two convolutional kernels. The proposed ED-NSNP detector is evaluated on several open benchmark images and compared with seven baseline edge detection methods. The comparison results indicate the availability and effectiveness of the proposed ED-NSNP detector.

基于非线性尖峰神经系统的边缘检测方法。
非线性spike neural P (NSNP)系统是一类受spike神经元非线性机制启发的类神经计算模型。NSNP系统有一个显著的特点:非线性尖峰机制。为了处理图像的边缘检测,本文提出了一种具有两个输出(To)的非线性尖峰神经P (NSNP)系统,称为NSNP- To系统。基于NSNP-TO系统,开发了一种边缘检测框架,称为ED-NSNP检测器。ED-NSNP检测器的检测能力依赖于两个卷积核。为了获得较好的检测性能,采用粒子群算法对两个卷积核的参数进行优化。在若干开放的基准图像上对所提出的ED-NSNP检测器进行了评估,并与7种基线边缘检测方法进行了比较。比较结果表明了所提出的ED-NSNP检测器的可用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Neural Systems
International Journal of Neural Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
28.80%
发文量
116
审稿时长
24 months
期刊介绍: The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信