Deepti M Reddi, Lindsey A Barner, Wynn Burke, Gan Gao, William M Grady, Jonathan T C Liu
{"title":"Nondestructive 3D Pathology Image Atlas of Barrett Esophagus With Open-Top Light-Sheet Microscopy.","authors":"Deepti M Reddi, Lindsey A Barner, Wynn Burke, Gan Gao, William M Grady, Jonathan T C Liu","doi":"10.5858/arpa.2022-0133-OA","DOIUrl":null,"url":null,"abstract":"<p><strong>Context.—: </strong>Anatomic pathologists render diagnosis on tissue samples sectioned onto glass slides and viewed under a bright-field microscope. This approach is destructive to the sample, which can limit its use for ancillary assays that can inform patient management. Furthermore, the subjective interpretation of a relatively small number of 2D tissue sections per sample contributes to low interobserver agreement among pathologists for the assessment (diagnosis and grading) of various lesions.</p><p><strong>Objective.—: </strong>To evaluate 3D pathology data sets of thick formalin-fixed Barrett esophagus specimens imaged nondestructively with open-top light-sheet (OTLS) microscopy.</p><p><strong>Design.—: </strong>Formalin-fixed, paraffin-embedded Barrett esophagus samples (N = 15) were deparaffinized, stained with a fluorescent analog of hematoxylin-eosin, optically cleared, and imaged nondestructively with OTLS microscopy. The OTLS microscopy images were subsequently compared with archived hematoxylin-eosin histology sections from each sample.</p><p><strong>Results.—: </strong>Barrett esophagus samples, both small endoscopic forceps biopsies and endoscopic mucosal resections, exhibited similar resolvable structures between OTLS microscopy and conventional light microscopy with up to a ×20 objective (×200 overall magnification). The 3D histologic images generated by OTLS microscopy can enable improved discrimination of cribriform and well-formed gland morphologies. In addition, a much larger amount of tissue is visualized with OTLS microscopy, which enables improved assessment of clinical specimens exhibiting high spatial heterogeneity.</p><p><strong>Conclusions.—: </strong>In esophageal specimens, OTLS microscopy can generate images comparable in quality to conventional light microscopy, with the advantages of providing 3D information for enhanced evaluation of glandular morphologies and enabling much more of the tissue specimen to be visualized nondestructively.</p>","PeriodicalId":8305,"journal":{"name":"Archives of pathology & laboratory medicine","volume":" ","pages":"1164-1171"},"PeriodicalIF":3.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of pathology & laboratory medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5858/arpa.2022-0133-OA","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Context.—: Anatomic pathologists render diagnosis on tissue samples sectioned onto glass slides and viewed under a bright-field microscope. This approach is destructive to the sample, which can limit its use for ancillary assays that can inform patient management. Furthermore, the subjective interpretation of a relatively small number of 2D tissue sections per sample contributes to low interobserver agreement among pathologists for the assessment (diagnosis and grading) of various lesions.
Objective.—: To evaluate 3D pathology data sets of thick formalin-fixed Barrett esophagus specimens imaged nondestructively with open-top light-sheet (OTLS) microscopy.
Design.—: Formalin-fixed, paraffin-embedded Barrett esophagus samples (N = 15) were deparaffinized, stained with a fluorescent analog of hematoxylin-eosin, optically cleared, and imaged nondestructively with OTLS microscopy. The OTLS microscopy images were subsequently compared with archived hematoxylin-eosin histology sections from each sample.
Results.—: Barrett esophagus samples, both small endoscopic forceps biopsies and endoscopic mucosal resections, exhibited similar resolvable structures between OTLS microscopy and conventional light microscopy with up to a ×20 objective (×200 overall magnification). The 3D histologic images generated by OTLS microscopy can enable improved discrimination of cribriform and well-formed gland morphologies. In addition, a much larger amount of tissue is visualized with OTLS microscopy, which enables improved assessment of clinical specimens exhibiting high spatial heterogeneity.
Conclusions.—: In esophageal specimens, OTLS microscopy can generate images comparable in quality to conventional light microscopy, with the advantages of providing 3D information for enhanced evaluation of glandular morphologies and enabling much more of the tissue specimen to be visualized nondestructively.
期刊介绍:
Welcome to the website of the Archives of Pathology & Laboratory Medicine (APLM). This monthly, peer-reviewed journal of the College of American Pathologists offers global reach and highest measured readership among pathology journals.
Published since 1926, ARCHIVES was voted in 2009 the only pathology journal among the top 100 most influential journals of the past 100 years by the BioMedical and Life Sciences Division of the Special Libraries Association. Online access to the full-text and PDF files of APLM articles is free.