{"title":"Dark current modeling of thick perovskite X-ray detectors.","authors":"Shan Zhao, Xinyuan Du, Jincong Pang, Haodi Wu, Zihao Song, Zhiping Zheng, Ling Xu, Jiang Tang, Guangda Niu","doi":"10.1007/s12200-022-00044-1","DOIUrl":null,"url":null,"abstract":"<p><p>Metal halide perovskites (MHPs) have demonstrated excellent performances in detection of X-rays and gamma-rays. Most studies focus on improving the sensitivity of single-pixel MHP detectors. However, little work pays attention to the dark current, which is crucial for the back-end circuit integration. Herein, the requirement of dark current is quantitatively evaluated as low as 10<sup>-9</sup> A/cm<sup>2</sup> for X-ray imagers integrated on pixel circuits. Moreover, through the semiconductor device analysis and simulation, we reveal that the main current compositions of thick perovskite X-ray detectors are the thermionic-emission current (J<sub>T</sub>) and the generation-recombination current (J<sub>g-r</sub>). The typical observed failures of p-n junctions in thick detectors are caused by the high generation-recombination current due to the band mismatch and interface defects. This work provides a deep insight into the design of high sensitivity and low dark current perovskite X-ray detectors.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9756221/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-022-00044-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
Metal halide perovskites (MHPs) have demonstrated excellent performances in detection of X-rays and gamma-rays. Most studies focus on improving the sensitivity of single-pixel MHP detectors. However, little work pays attention to the dark current, which is crucial for the back-end circuit integration. Herein, the requirement of dark current is quantitatively evaluated as low as 10-9 A/cm2 for X-ray imagers integrated on pixel circuits. Moreover, through the semiconductor device analysis and simulation, we reveal that the main current compositions of thick perovskite X-ray detectors are the thermionic-emission current (JT) and the generation-recombination current (Jg-r). The typical observed failures of p-n junctions in thick detectors are caused by the high generation-recombination current due to the band mismatch and interface defects. This work provides a deep insight into the design of high sensitivity and low dark current perovskite X-ray detectors.
期刊介绍:
Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on.
Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics.
Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology.
● Presents the latest developments in optoelectronics and optics
● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications
● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more