{"title":"Sensitivity of Ca<sup>2+</sup>-sensing receptor-transient receptor potential-mediated Ca<sup>2+</sup> influx to extracellular acidity in bEND.3 endothelial cells.","authors":"Iat-Lon Leong, Chung-Ming Yu, Lian-Ru Shiao, Paul Chan, King-Chuen Wu, Yuk-Man Leung","doi":"10.4103/0304-4920.365460","DOIUrl":null,"url":null,"abstract":"<p><p>Ca<sup>2+</sup>-sensing receptors (CaSRs) are G protein-coupled receptors activated by elevated concentrations of extracellular Ca<sup>2+</sup>. In our previous works, we showed protein and functional expression of CaSR in mouse cerebral endothelial cell (EC) (bEND.3); the CaSR response (high Ca<sup>2+</sup>-elicited cytosolic [Ca<sup>2+</sup>] elevation) was unaffected by suppression of phospholipase C but in part involved Ca<sup>2+</sup> influx through transient receptor potential V1 (TRPV1) channels. In this work, we investigated if extracellular acidity affected CaSR-mediated Ca<sup>2+</sup> influx triggered by high (3 mM) Ca<sup>2+</sup> (CaSR agonist), 3 mM spermine (CaSR agonist), and 10 mM cinacalcet (positive allosteric modulator of CaSR). Extracellular acidosis (pH 6.8 and pH 6.0) strongly suppressed cytosolic [Ca<sup>2+</sup>] elevation triggered by high Ca<sup>2+</sup>, spermine, and cinacalcet; acidosis also inhibited Mn<sup>2+</sup> influx stimulated by high Ca<sup>2+</sup> and cinacalcet. Purinoceptor-triggered Ca<sup>2+</sup> response, however, was not suppressed by acidosis. Extracellular acidity also did not affect membrane potential, suggesting suppressed CaSR-mediated Ca<sup>2+</sup> influx in acidity did not result from the reduced electrical driving force for Ca<sup>2+</sup>. Our results suggest Ca<sup>2+</sup> influx through a putative CaSR-TRP complex in bEND.3 EC was sensitive to extracellular pH.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/0304-4920.365460","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ca2+-sensing receptors (CaSRs) are G protein-coupled receptors activated by elevated concentrations of extracellular Ca2+. In our previous works, we showed protein and functional expression of CaSR in mouse cerebral endothelial cell (EC) (bEND.3); the CaSR response (high Ca2+-elicited cytosolic [Ca2+] elevation) was unaffected by suppression of phospholipase C but in part involved Ca2+ influx through transient receptor potential V1 (TRPV1) channels. In this work, we investigated if extracellular acidity affected CaSR-mediated Ca2+ influx triggered by high (3 mM) Ca2+ (CaSR agonist), 3 mM spermine (CaSR agonist), and 10 mM cinacalcet (positive allosteric modulator of CaSR). Extracellular acidosis (pH 6.8 and pH 6.0) strongly suppressed cytosolic [Ca2+] elevation triggered by high Ca2+, spermine, and cinacalcet; acidosis also inhibited Mn2+ influx stimulated by high Ca2+ and cinacalcet. Purinoceptor-triggered Ca2+ response, however, was not suppressed by acidosis. Extracellular acidity also did not affect membrane potential, suggesting suppressed CaSR-mediated Ca2+ influx in acidity did not result from the reduced electrical driving force for Ca2+. Our results suggest Ca2+ influx through a putative CaSR-TRP complex in bEND.3 EC was sensitive to extracellular pH.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.