{"title":"Overexpression of long non-coding RNA LINC00158 inhibits neuronal apoptosis by promoting autophagy in spinal cord injury.","authors":"Fuchuang Qin, Guorong He, Yu Sun, Guangning Chen, Qijian Yu, Xilie Ma","doi":"10.4103/0304-4920.360035","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) is a common central nervous system disease. It is reported that long non-coding RNA LINC00158 is involved in the process of SCI. The purpose of this study was to explore the biological role of LINC00158 in the SCI. First, we established a rat SCI model by surgical method and evaluated the motor function of rats by the Basso-Beattie-Bresnahan locomotor rating scale. The results showed that the expression of LINC00158 decreased and apoptotic cells increased in the SCI model rats. Meanwhile, we found the upregulated LC3-II/LC3-I, Beclin-1, and p62 in the SCI rats. Then, primary rat spinal cord neurons were exposed to oxygen/glucose deprivation (OGD) as an in vitro cell model of SCI. After OGD treatment, the expression of LINC00158 decreased significantly and the apoptosis of spinal cord neurons increased. OGD treatment resulted in upregulation of LC3-II/LC3-I and Beclin-1 and downregulation of p62 in primary spinal cord neurons, which could be eliminated by overexpression of LINC00158. 3-Methyladenine and chloroquine (autophagy inhibitor) reversed the inhibitory effect of LINC00158 overexpression on apoptosis of primary spinal cord neurons. In conclusion, this study demonstrated that LINC00158 overexpression repressed neuronal apoptosis by promoting autophagy, suggesting that LINC00158 may be a potential therapeutic target in the SCI.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/0304-4920.360035","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Spinal cord injury (SCI) is a common central nervous system disease. It is reported that long non-coding RNA LINC00158 is involved in the process of SCI. The purpose of this study was to explore the biological role of LINC00158 in the SCI. First, we established a rat SCI model by surgical method and evaluated the motor function of rats by the Basso-Beattie-Bresnahan locomotor rating scale. The results showed that the expression of LINC00158 decreased and apoptotic cells increased in the SCI model rats. Meanwhile, we found the upregulated LC3-II/LC3-I, Beclin-1, and p62 in the SCI rats. Then, primary rat spinal cord neurons were exposed to oxygen/glucose deprivation (OGD) as an in vitro cell model of SCI. After OGD treatment, the expression of LINC00158 decreased significantly and the apoptosis of spinal cord neurons increased. OGD treatment resulted in upregulation of LC3-II/LC3-I and Beclin-1 and downregulation of p62 in primary spinal cord neurons, which could be eliminated by overexpression of LINC00158. 3-Methyladenine and chloroquine (autophagy inhibitor) reversed the inhibitory effect of LINC00158 overexpression on apoptosis of primary spinal cord neurons. In conclusion, this study demonstrated that LINC00158 overexpression repressed neuronal apoptosis by promoting autophagy, suggesting that LINC00158 may be a potential therapeutic target in the SCI.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.