Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies.

IF 4.4 4区 医学 Q1 GERIATRICS & GERONTOLOGY
Biogerontology Pub Date : 2023-10-01 Epub Date: 2023-07-30 DOI:10.1007/s10522-023-10050-1
Mani Raj Chaudhary, Sakshi Chaudhary, Yogita Sharma, Thokchom Arjun Singh, Alok Kumar Mishra, Shweta Sharma, Mohammad Murtaza Mehdi
{"title":"Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies.","authors":"Mani Raj Chaudhary, Sakshi Chaudhary, Yogita Sharma, Thokchom Arjun Singh, Alok Kumar Mishra, Shweta Sharma, Mohammad Murtaza Mehdi","doi":"10.1007/s10522-023-10050-1","DOIUrl":null,"url":null,"abstract":"<p><p>Aging accompanied by several age-related complications, is a multifaceted inevitable biological progression involving various genetic, environmental, and lifestyle factors. The major factor in this process is oxidative stress, caused by an abundance of reactive oxygen species (ROS) generated in the mitochondria and endoplasmic reticulum (ER). ROS and RNS pose a threat by disrupting signaling mechanisms and causing oxidative damage to cellular components. This oxidative stress affects both the ER and mitochondria, causing proteopathies (abnormal protein aggregation), initiation of unfolded protein response, mitochondrial dysfunction, abnormal cellular senescence, ultimately leading to inflammaging (chronic inflammation associated with aging) and, in rare cases, metastasis. RONS during oxidative stress dysregulate multiple metabolic pathways like NF-κB, MAPK, Nrf-2/Keap-1/ARE and PI3K/Akt which may lead to inappropriate cell death through apoptosis and necrosis. Inflammaging contributes to the development of inflammatory and degenerative diseases such as neurodegenerative diseases, diabetes, cardiovascular disease, chronic kidney disease, and retinopathy. The body's antioxidant systems, sirtuins, autophagy, apoptosis, and biogenesis play a role in maintaining homeostasis, but they have limitations and cannot achieve an ideal state of balance. Certain interventions, such as calorie restriction, intermittent fasting, dietary habits, and regular exercise, have shown beneficial effects in counteracting the aging process. In addition, interventions like senotherapy (targeting senescent cells) and sirtuin-activating compounds (STACs) enhance autophagy and apoptosis for efficient removal of damaged oxidative products and organelles. Further, STACs enhance biogenesis for the regeneration of required organelles to maintain homeostasis. This review article explores the various aspects of oxidative damage, the associated complications, and potential strategies to mitigate these effects.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10522-023-10050-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aging accompanied by several age-related complications, is a multifaceted inevitable biological progression involving various genetic, environmental, and lifestyle factors. The major factor in this process is oxidative stress, caused by an abundance of reactive oxygen species (ROS) generated in the mitochondria and endoplasmic reticulum (ER). ROS and RNS pose a threat by disrupting signaling mechanisms and causing oxidative damage to cellular components. This oxidative stress affects both the ER and mitochondria, causing proteopathies (abnormal protein aggregation), initiation of unfolded protein response, mitochondrial dysfunction, abnormal cellular senescence, ultimately leading to inflammaging (chronic inflammation associated with aging) and, in rare cases, metastasis. RONS during oxidative stress dysregulate multiple metabolic pathways like NF-κB, MAPK, Nrf-2/Keap-1/ARE and PI3K/Akt which may lead to inappropriate cell death through apoptosis and necrosis. Inflammaging contributes to the development of inflammatory and degenerative diseases such as neurodegenerative diseases, diabetes, cardiovascular disease, chronic kidney disease, and retinopathy. The body's antioxidant systems, sirtuins, autophagy, apoptosis, and biogenesis play a role in maintaining homeostasis, but they have limitations and cannot achieve an ideal state of balance. Certain interventions, such as calorie restriction, intermittent fasting, dietary habits, and regular exercise, have shown beneficial effects in counteracting the aging process. In addition, interventions like senotherapy (targeting senescent cells) and sirtuin-activating compounds (STACs) enhance autophagy and apoptosis for efficient removal of damaged oxidative products and organelles. Further, STACs enhance biogenesis for the regeneration of required organelles to maintain homeostasis. This review article explores the various aspects of oxidative damage, the associated complications, and potential strategies to mitigate these effects.

Abstract Image

衰老、氧化应激和退行性疾病:机制、并发症和新兴的治疗策略。
衰老伴随着几种与年龄相关的并发症,是一种多方面的不可避免的生物学进展,涉及各种遗传、环境和生活方式因素。这一过程中的主要因素是氧化应激,由线粒体和内质网(ER)中产生的大量活性氧(ROS)引起。ROS和RNS通过破坏信号机制和对细胞成分造成氧化损伤而构成威胁。这种氧化应激影响内质网和线粒体,导致蛋白病(异常蛋白质聚集)、未折叠蛋白质反应的启动、线粒体功能障碍、细胞异常衰老,最终导致炎症(与衰老相关的慢性炎症),在极少数情况下,还导致转移。氧化应激过程中的RONS失调多种代谢途径,如NF-κB、MAPK、Nrf-2/Keap-1/ARE和PI3K/Akt,这些途径可能通过细胞凋亡和坏死导致不适当的细胞死亡。炎症会导致炎症和退行性疾病的发展,如神经退行性疾病、糖尿病、心血管疾病、慢性肾脏疾病和视网膜病变。人体的抗氧化系统、sirtuins、自噬、细胞凋亡和生物发生在维持体内平衡方面发挥作用,但它们有局限性,无法达到理想的平衡状态。某些干预措施,如限制热量、间歇性禁食、饮食习惯和定期锻炼,在对抗衰老过程中显示出有益的效果。此外,Sentherapy(靶向衰老细胞)和sirtuin激活化合物(STACs)等干预措施可增强自噬和细胞凋亡,从而有效去除受损的氧化产物和细胞器。此外,STACs增强了所需细胞器再生的生物发生,以维持体内平衡。这篇综述文章探讨了氧化损伤的各个方面,相关的并发症,以及减轻这些影响的潜在策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biogerontology
Biogerontology 医学-老年医学
CiteScore
8.00
自引率
4.40%
发文量
54
审稿时长
>12 weeks
期刊介绍: The journal Biogerontology offers a platform for research which aims primarily at achieving healthy old age accompanied by improved longevity. The focus is on efforts to understand, prevent, cure or minimize age-related impairments. Biogerontology provides a peer-reviewed forum for publishing original research data, new ideas and discussions on modulating the aging process by physical, chemical and biological means, including transgenic and knockout organisms; cell culture systems to develop new approaches and health care products for maintaining or recovering the lost biochemical functions; immunology, autoimmunity and infection in aging; vertebrates, invertebrates, micro-organisms and plants for experimental studies on genetic determinants of aging and longevity; biodemography and theoretical models linking aging and survival kinetics.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信