A Law of Redundancy Compounds the Problem of Cancer and Precision Medicine.

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Journal of Molecular Evolution Pub Date : 2023-10-01 Epub Date: 2023-09-04 DOI:10.1007/s00239-023-10131-2
Rama S Singh
{"title":"A Law of Redundancy Compounds the Problem of Cancer and Precision Medicine.","authors":"Rama S Singh","doi":"10.1007/s00239-023-10131-2","DOIUrl":null,"url":null,"abstract":"<p><p>Genetics and molecular biology research have progressed for over a century; however, no laws of biology resembling those of physics have been identified, despite the expectations of some physicists. It may be that it is not the properties of matter alone but evolved properties of matter in combination with atomic physics and chemistry that gave rise to the origin and complexity of life. It is proposed that any law of biology must also be a product of evolution that co-evolved with the origin and progression of life. It was suggested that molecular complexity and redundancy exponentially increase over time and have the following relationship: DNA sequence complexity (Cd) < molecular complexity (Cm) < phenotypic complexity (Cp). This study presents a law of redundancy, which together with the law of complexity, is proposed as an evolutionary law of biology. Molecular complexity and redundancy are inseparable aspects of biochemical pathways, and molecular redundancy provides the first line of defense against environmental challenges, including those of deleterious mutations. Redundancy can create problems for precision medicine because in addition to the issues arising from the involvement of multiple genes, redundancy arising from alternate pathways between genotypes and phenotypes can complicate gene detection for complex diseases and mental disorders. This study uses cancer as an example to show how cellular complexity, molecular redundancy, and hidden variation affect the ability of cancer cells to evolve and evade detection and elimination. Characterization of alternate biochemical pathways or \"escape routes\" can provide a step in the fight against cancer.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10597872/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-023-10131-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/4 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Genetics and molecular biology research have progressed for over a century; however, no laws of biology resembling those of physics have been identified, despite the expectations of some physicists. It may be that it is not the properties of matter alone but evolved properties of matter in combination with atomic physics and chemistry that gave rise to the origin and complexity of life. It is proposed that any law of biology must also be a product of evolution that co-evolved with the origin and progression of life. It was suggested that molecular complexity and redundancy exponentially increase over time and have the following relationship: DNA sequence complexity (Cd) < molecular complexity (Cm) < phenotypic complexity (Cp). This study presents a law of redundancy, which together with the law of complexity, is proposed as an evolutionary law of biology. Molecular complexity and redundancy are inseparable aspects of biochemical pathways, and molecular redundancy provides the first line of defense against environmental challenges, including those of deleterious mutations. Redundancy can create problems for precision medicine because in addition to the issues arising from the involvement of multiple genes, redundancy arising from alternate pathways between genotypes and phenotypes can complicate gene detection for complex diseases and mental disorders. This study uses cancer as an example to show how cellular complexity, molecular redundancy, and hidden variation affect the ability of cancer cells to evolve and evade detection and elimination. Characterization of alternate biochemical pathways or "escape routes" can provide a step in the fight against cancer.

Abstract Image

冗余定律使癌症和精准医疗的问题复杂化。
遗传学和分子生物学研究已经发展了一个多世纪;然而,尽管一些物理学家抱有期望,但还没有发现类似于物理学的生物学定律。生命的起源和复杂性可能不仅仅是物质的性质,而是物质与原子物理和化学相结合的进化性质。有人提出,任何生物学定律都必须是与生命起源和发展共同进化的进化产物。研究表明,分子复杂性和冗余度随时间呈指数增长,并具有以下关系:DNA序列复杂性(Cd)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Evolution
Journal of Molecular Evolution 生物-进化生物学
CiteScore
5.50
自引率
2.60%
发文量
36
审稿时长
3 months
期刊介绍: Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信