Secretome profile of TNF-α-induced human umbilical cord mesenchymal stem cells unveils biological processes relevant to skin wound healing.

IF 2.4 4区 医学 Q4 CELL & TISSUE ENGINEERING
Regenerative medicine Pub Date : 2023-11-01 Epub Date: 2023-09-06 DOI:10.2217/rme-2023-0085
Lihui Tai, Nik Syazana Saffery, Sze Piaw Chin, Soon Keng Cheong
{"title":"Secretome profile of TNF-α-induced human umbilical cord mesenchymal stem cells unveils biological processes relevant to skin wound healing.","authors":"Lihui Tai, Nik Syazana Saffery, Sze Piaw Chin, Soon Keng Cheong","doi":"10.2217/rme-2023-0085","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> To profile and study the proteins responsible for the beneficial effect of the TNF-α-induced human umbilical cord mesenchymal stem cells (hUCMSCs) secretome in wound healing. <b>Methods:</b> The hUCMSCs secretome was generated with (induced) or without (uninduced) TNF-α and was subsequently analyzed by liquid chromatography-mass spectrometry, immunoassay and <i>in vitro</i> scratch assay. <b>Results:</b> Proteomic analysis revealed approximately 260 proteins, including 51 and 55 unique proteins in the induced and uninduced secretomes, respectively. Gene ontology analysis disclosed that differential proteins in the induced secretome mainly involved inflammation-related terms. The induced secretome, consisting of higher levels of FGFb, VEGF, PDGF and IL-6, significantly accelerated wound closure and enhanced MMP-13 secretion in HaCaT keratinocytes. <b>Conclusion:</b> The secretome from induced hUCMSCs includes factors that promote wound closure.</p>","PeriodicalId":21043,"journal":{"name":"Regenerative medicine","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2217/rme-2023-0085","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/6 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: To profile and study the proteins responsible for the beneficial effect of the TNF-α-induced human umbilical cord mesenchymal stem cells (hUCMSCs) secretome in wound healing. Methods: The hUCMSCs secretome was generated with (induced) or without (uninduced) TNF-α and was subsequently analyzed by liquid chromatography-mass spectrometry, immunoassay and in vitro scratch assay. Results: Proteomic analysis revealed approximately 260 proteins, including 51 and 55 unique proteins in the induced and uninduced secretomes, respectively. Gene ontology analysis disclosed that differential proteins in the induced secretome mainly involved inflammation-related terms. The induced secretome, consisting of higher levels of FGFb, VEGF, PDGF and IL-6, significantly accelerated wound closure and enhanced MMP-13 secretion in HaCaT keratinocytes. Conclusion: The secretome from induced hUCMSCs includes factors that promote wound closure.

TNF-α-诱导的人脐带间充质干细胞分泌组谱揭示了与皮肤伤口愈合相关的生物学过程。
目的:研究TNF-α-诱导的人脐带间充质干细胞(hUCMSCs)分泌组对创面愈合有益作用的相关蛋白。方法:用(诱导)或不(未诱导)TNF-α制备hUCMSCs分泌组,并采用液相色谱-质谱法、免疫分析法和体外划痕法进行分析。结果:蛋白质组学分析显示了大约260种蛋白质,其中诱导和未诱导分泌组中分别有51种和55种独特的蛋白质。基因本体论分析表明,诱导分泌组中的差异蛋白主要涉及炎症相关术语。诱导的分泌组由更高水平的FGFb、VEGF、PDGF和IL-6组成,显著加速了HaCaT角化细胞的伤口愈合,增强了MMP-13的分泌。结论:诱导的hUCMSCs分泌组中含有促进伤口愈合的因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Regenerative medicine
Regenerative medicine 医学-工程:生物医学
CiteScore
4.20
自引率
3.70%
发文量
82
审稿时长
6-12 weeks
期刊介绍: Regenerative medicine replaces or regenerates human cells, tissue or organs, to restore or establish normal function*. Since 2006, Regenerative Medicine has been at the forefront of publishing the very best papers and reviews covering the entire regenerative medicine sector. The journal focusses on the entire spectrum of approaches to regenerative medicine, including small molecule drugs, biologics, biomaterials and tissue engineering, and cell and gene therapies – it’s all about regeneration and not a specific platform technology. The journal’s scope encompasses all aspects of the sector ranging from discovery research, through to clinical development, through to commercialization. Regenerative Medicine uniquely supports this important area of biomedical science and healthcare by providing a peer-reviewed journal totally committed to publishing the very best regenerative medicine research, clinical translation and commercialization. Regenerative Medicine provides a specialist forum to address the important challenges and advances in regenerative medicine, delivering this essential information in concise, clear and attractive article formats – vital to a rapidly growing, multidisciplinary and increasingly time-constrained community. Despite substantial developments in our knowledge and understanding of regeneration, the field is still in its infancy. However, progress is accelerating. The next few decades will see the discovery and development of transformative therapies for patients, and in some cases, even cures. Regenerative Medicine will continue to provide a critical overview of these advances as they progress, undergo clinical trials, and eventually become mainstream medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信