{"title":"The Lack of Robustness of a Statistic Based on the Neyman-Pearson Lemma to Violations of Its Underlying Assumptions.","authors":"Sandip Sinharay","doi":"10.1177/01466216211049209","DOIUrl":null,"url":null,"abstract":"<p><p>Drasgow, Levine, and Zickar (1996) suggested a statistic based on the Neyman-Pearson lemma (NPL; e.g., Lehmann & Romano, 2005, p. 60) for detecting preknowledge on a known set of items. The statistic is a special case of the optimal appropriateness indices (OAIs) of Levine and Drasgow (1988) and is the most powerful statistic for detecting item preknowledge when the assumptions underlying the statistic hold for the data (e.g., Belov, 2016Belov, 2016; Drasgow et al., 1996). This paper demonstrated using real data analysis that one assumption underlying the statistic of Drasgow et al. (1996) is often likely to be violated in practice. This paper also demonstrated, using simulated data, that the statistic is not robust to realistic violations of its underlying assumptions. Together, the results from the real data and the simulations demonstrate that the statistic of Drasgow et al. (1996) may not always be the optimum statistic in practice and occasionally has smaller power than another statistic for detecting preknowledge on a known set of items, especially when the assumptions underlying the former statistic do not hold. The findings of this paper demonstrate the importance of keeping in mind the assumptions underlying and the limitations of any statistic or method.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655463/pdf/10.1177_01466216211049209.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216211049209","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 2
Abstract
Drasgow, Levine, and Zickar (1996) suggested a statistic based on the Neyman-Pearson lemma (NPL; e.g., Lehmann & Romano, 2005, p. 60) for detecting preknowledge on a known set of items. The statistic is a special case of the optimal appropriateness indices (OAIs) of Levine and Drasgow (1988) and is the most powerful statistic for detecting item preknowledge when the assumptions underlying the statistic hold for the data (e.g., Belov, 2016Belov, 2016; Drasgow et al., 1996). This paper demonstrated using real data analysis that one assumption underlying the statistic of Drasgow et al. (1996) is often likely to be violated in practice. This paper also demonstrated, using simulated data, that the statistic is not robust to realistic violations of its underlying assumptions. Together, the results from the real data and the simulations demonstrate that the statistic of Drasgow et al. (1996) may not always be the optimum statistic in practice and occasionally has smaller power than another statistic for detecting preknowledge on a known set of items, especially when the assumptions underlying the former statistic do not hold. The findings of this paper demonstrate the importance of keeping in mind the assumptions underlying and the limitations of any statistic or method.
期刊介绍:
Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.