Non-precious and accessible nanocomposite of iron oxide on PDDA-Modified graphene for catalyzing oxygen reduction reaction

IF 5.4 Q2 CHEMISTRY, PHYSICAL
Tung-Yuan Yung , Thangavel Sangeetha , Wei-Mon Yan , Cheng-Jung Yang , Po-Tuan Chen
{"title":"Non-precious and accessible nanocomposite of iron oxide on PDDA-Modified graphene for catalyzing oxygen reduction reaction","authors":"Tung-Yuan Yung ,&nbsp;Thangavel Sangeetha ,&nbsp;Wei-Mon Yan ,&nbsp;Cheng-Jung Yang ,&nbsp;Po-Tuan Chen","doi":"10.1016/j.powera.2020.100025","DOIUrl":null,"url":null,"abstract":"<div><p>Nanocomposite catalysts composed of non-precious nanoparticles anchored by modified graphene for oxygen reduction reactions (ORRs) are the emphasis of research nowadays for wide application in electrocatalyst systems. Herein, an endeavor is made to report on a one-pot synthesis method to produce a catalyst for Fe<sub>3</sub>O<sub>4</sub> and Ni–NiO nanoparticles on Polydiallyldimethylammonium chloride-modified graphenes (PDDA-G). The nanocomposite is characterized by spectral measurements, using scanning electron spectroscopy (SEM), transmitting electron spectroscopy (TEM), x-ray diffractometer (XRD) and Raman spectroscopy to reveal its microstructure. Through a layer-by-layer PDDA-G investigation, a significant anchoring of nanoparticles and maintenance of the graphene with good electron transporting properties and spatial distance in nanoscale by PDDA is achieved. Additionally, the electrochemical properties of Fe<sub>3</sub>O<sub>4</sub>@PDDA-G and Ni–NiO@PDDA-G are demonstrated by linear scan voltammetry (LSV) with rotation disk electrode (RDE). Fe<sub>3</sub>O<sub>4</sub>@PDDA-G displays prominent ORR activity in 2-electron and 4-electron pathways, and better ORR mass activities than Ni–NiO@PDDA-G and commercial Pt/C. The results of this study provide a new strategy to develop material design approaches for high-performance electrocatalysts to be employed in fuel cells.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2020.100025","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248520300251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Nanocomposite catalysts composed of non-precious nanoparticles anchored by modified graphene for oxygen reduction reactions (ORRs) are the emphasis of research nowadays for wide application in electrocatalyst systems. Herein, an endeavor is made to report on a one-pot synthesis method to produce a catalyst for Fe3O4 and Ni–NiO nanoparticles on Polydiallyldimethylammonium chloride-modified graphenes (PDDA-G). The nanocomposite is characterized by spectral measurements, using scanning electron spectroscopy (SEM), transmitting electron spectroscopy (TEM), x-ray diffractometer (XRD) and Raman spectroscopy to reveal its microstructure. Through a layer-by-layer PDDA-G investigation, a significant anchoring of nanoparticles and maintenance of the graphene with good electron transporting properties and spatial distance in nanoscale by PDDA is achieved. Additionally, the electrochemical properties of Fe3O4@PDDA-G and Ni–NiO@PDDA-G are demonstrated by linear scan voltammetry (LSV) with rotation disk electrode (RDE). Fe3O4@PDDA-G displays prominent ORR activity in 2-electron and 4-electron pathways, and better ORR mass activities than Ni–NiO@PDDA-G and commercial Pt/C. The results of this study provide a new strategy to develop material design approaches for high-performance electrocatalysts to be employed in fuel cells.

用于催化氧还原反应的ppdda修饰石墨烯上的非贵重且易获得的纳米氧化铁复合材料
以改性石墨烯为锚定载体,由非贵金属纳米颗粒组成的用于氧还原反应的纳米复合催化剂是目前研究的重点,在电催化体系中有着广泛的应用。本文报道了一锅法在聚二烯基二甲基氯化铵修饰石墨烯(PDDA-G)上制备Fe3O4和Ni-NiO纳米颗粒催化剂的方法。利用扫描电子能谱(SEM)、透射电子能谱(TEM)、x射线衍射仪(XRD)和拉曼光谱对纳米复合材料进行了表征。通过一层一层的PDDA- g研究,实现了纳米粒子的显著锚定,并在纳米尺度上维持了具有良好电子传递性能和空间距离的石墨烯。此外,通过旋转圆盘电极(RDE)的线性扫描伏安法(LSV)表征了Fe3O4@PDDA-G和Ni - NiO@PDDA-G的电化学性质。Fe3O4@PDDA-G在2电子和4电子途径中表现出显著的ORR活性,ORR质量活性优于Ni - NiO@PDDA-G和商用Pt/C。本研究结果为开发用于燃料电池的高性能电催化剂的材料设计方法提供了新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
18
审稿时长
64 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信