Cristina E. María-Ríos , Christopher J. Fitzpatrick , Francesca N. Czesak , Jonathan D. Morrow
{"title":"Effects of predictive and incentive value manipulation on sign- and goal-tracking behavior","authors":"Cristina E. María-Ríos , Christopher J. Fitzpatrick , Francesca N. Czesak , Jonathan D. Morrow","doi":"10.1016/j.nlm.2023.107796","DOIUrl":null,"url":null,"abstract":"<div><p><span>When a neutral stimulus is repeatedly paired with an appetitive reward, two different types of conditioned approach responses may develop: a sign-tracking response directed toward the neutral cue, or a goal-tracking response directed toward the location of impending reward delivery. Sign-tracking responses have been postulated to result from attribution of incentive value to conditioned cues, while goal-tracking reflects the assignment of only predictive value to the cue. We therefore hypothesized that sign-tracking rats would be more sensitive to manipulations of incentive value, while goal-tracking rats would be more responsive to changes in the predictive value of the cue. We tested sign- and goal-tracking before and after devaluation of a food reward using lithium chloride, and tested whether either response could be learned under negative contingency conditions that precluded any serendipitous reinforcement of the </span>behavior that might support instrumental learning. We also tested the effects of blocking the predictive value of a cue using simultaneous presentation of a pre-conditioned cue. We found that sign-tracking was sensitive to outcome devaluation, while goal-tracking was not. We also confirmed that both responses are Pavlovian because they can be learned under negative contingency conditions. Goal-tracking was almost completely blocked by a pre-conditioned cue, while sign-tracking was much less sensitive to such interference. These results indicate that sign- and goal-tracking may follow different rules of reinforcement learning and suggest a need to revise current models of associative learning to account for these differences.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1074742723000771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
When a neutral stimulus is repeatedly paired with an appetitive reward, two different types of conditioned approach responses may develop: a sign-tracking response directed toward the neutral cue, or a goal-tracking response directed toward the location of impending reward delivery. Sign-tracking responses have been postulated to result from attribution of incentive value to conditioned cues, while goal-tracking reflects the assignment of only predictive value to the cue. We therefore hypothesized that sign-tracking rats would be more sensitive to manipulations of incentive value, while goal-tracking rats would be more responsive to changes in the predictive value of the cue. We tested sign- and goal-tracking before and after devaluation of a food reward using lithium chloride, and tested whether either response could be learned under negative contingency conditions that precluded any serendipitous reinforcement of the behavior that might support instrumental learning. We also tested the effects of blocking the predictive value of a cue using simultaneous presentation of a pre-conditioned cue. We found that sign-tracking was sensitive to outcome devaluation, while goal-tracking was not. We also confirmed that both responses are Pavlovian because they can be learned under negative contingency conditions. Goal-tracking was almost completely blocked by a pre-conditioned cue, while sign-tracking was much less sensitive to such interference. These results indicate that sign- and goal-tracking may follow different rules of reinforcement learning and suggest a need to revise current models of associative learning to account for these differences.