{"title":"Gut-brain axis: Review on the association between Parkinson's disease and plant lectins.","authors":"Kayvon Moin, Carly Funk, Meagan Josephs, Kyle Coombes, Madeleine Yeakle, Dhir Gala, Mohammad Ahmed-Khan","doi":"10.22551/2022.37.0904.10228","DOIUrl":null,"url":null,"abstract":"<p><p>Gastrointestinal (GI) involvement in the pathogenesis of Parkinson's Disease (PD) has been widely recognized and supported in recent literature. Prospective and retrospective studies found non-motor symptoms within the GI, specifically constipation, precede cardinal signs and cognitive decline by almost 20 years. In 2002, Braak et al. were the first to propose that PD is a six-stage propagating neuropathological process originating from the GI tract (GIT). Aggregated α-synuclein (α-syn) protein from the GIT is pathognomonic for the development of PD. This article reviews the current literature from the past 10 years as well as original research found in PubMed on the combined effects of enteric glial cells and lectins on the development of Parkinson's Disease. Studies have found that these aggregated and phosphorylated proteins gain access to the brain via retrograde transport through fast and slow fibers of intestinal neurons. Plant lectins, commonly found within plant-based diets, have been found to induce Leaky Gut Syndrome and can activate enteric glial cells, causing the release of pro-inflammatory cytokines. Oxidative stress on the enteric neurons, caused by a chronic neuro-inflammatory state, can cause a-syn aggregation and lead to Lewy Body formation, a hallmark finding in PD. Although the current literature provides a connection between the consumption of plant lectins and the pathophysiology of PD, further research is required to evaluate confounding variables such as food antigen mimicry and other harmful substances found in our diets.</p>","PeriodicalId":72274,"journal":{"name":"Archive of clinical cases","volume":"9 4","pages":"177-183"},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/cc/90/acc-09-04-177.PMC9769076.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of clinical cases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22551/2022.37.0904.10228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gastrointestinal (GI) involvement in the pathogenesis of Parkinson's Disease (PD) has been widely recognized and supported in recent literature. Prospective and retrospective studies found non-motor symptoms within the GI, specifically constipation, precede cardinal signs and cognitive decline by almost 20 years. In 2002, Braak et al. were the first to propose that PD is a six-stage propagating neuropathological process originating from the GI tract (GIT). Aggregated α-synuclein (α-syn) protein from the GIT is pathognomonic for the development of PD. This article reviews the current literature from the past 10 years as well as original research found in PubMed on the combined effects of enteric glial cells and lectins on the development of Parkinson's Disease. Studies have found that these aggregated and phosphorylated proteins gain access to the brain via retrograde transport through fast and slow fibers of intestinal neurons. Plant lectins, commonly found within plant-based diets, have been found to induce Leaky Gut Syndrome and can activate enteric glial cells, causing the release of pro-inflammatory cytokines. Oxidative stress on the enteric neurons, caused by a chronic neuro-inflammatory state, can cause a-syn aggregation and lead to Lewy Body formation, a hallmark finding in PD. Although the current literature provides a connection between the consumption of plant lectins and the pathophysiology of PD, further research is required to evaluate confounding variables such as food antigen mimicry and other harmful substances found in our diets.