Implications of a Catastrophic Refrigeration Failure on the Viability of Cryogenically Stored Samples

IF 1.9 3区 生物学 Q4 MICROBIOLOGY
John G. Day , Katharine H. Childs , Glyn N. Stacey
{"title":"Implications of a Catastrophic Refrigeration Failure on the Viability of Cryogenically Stored Samples","authors":"John G. Day ,&nbsp;Katharine H. Childs ,&nbsp;Glyn N. Stacey","doi":"10.1016/j.protis.2022.125915","DOIUrl":null,"url":null,"abstract":"<div><p>Cryopreservation, the use of very low temperatures to preserve structurally intact living cells and tissues, is a key underpinning technology for life science research and medicine. It is employed to ensure the stability of critical biological resources including viruses, bacteria, protists, animal cell cultures, plants, reproductive materials and embryos. Fundamental to ensuring this stability is assuring stability of cryogenic storage temperatures. Here we report the occurrence of a failure in refrigeration in a cryostat holding &gt; 600 strains of cyanobacteria and eukaryotic microalgae. A strategic approach was adopted to assess viability across a cross-section of the biodiversity held, both immediately after the potentially damaging temperature shift and 10 years later, on subsequent cryostorage in liquid-phase nitrogen (∼−196 °C). Furthermore, the event was replicated experimentally and the effects on the viability of cryo-tolerant and cryo-sensitive strains monitored. Our results have significant implications to all users of this storage method and parallels have been drawn with the ongoing development in other fields and in particular, human cell therapy. Based on our practical experience we have made a series of generic recommendations for emergency, remedial and ongoing preventative actions.</p></div>","PeriodicalId":20781,"journal":{"name":"Protist","volume":"173 6","pages":"Article 125915"},"PeriodicalIF":1.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1434461022000608/pdfft?md5=068d903fd66f1e23dca35f6275ede893&pid=1-s2.0-S1434461022000608-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protist","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434461022000608","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cryopreservation, the use of very low temperatures to preserve structurally intact living cells and tissues, is a key underpinning technology for life science research and medicine. It is employed to ensure the stability of critical biological resources including viruses, bacteria, protists, animal cell cultures, plants, reproductive materials and embryos. Fundamental to ensuring this stability is assuring stability of cryogenic storage temperatures. Here we report the occurrence of a failure in refrigeration in a cryostat holding > 600 strains of cyanobacteria and eukaryotic microalgae. A strategic approach was adopted to assess viability across a cross-section of the biodiversity held, both immediately after the potentially damaging temperature shift and 10 years later, on subsequent cryostorage in liquid-phase nitrogen (∼−196 °C). Furthermore, the event was replicated experimentally and the effects on the viability of cryo-tolerant and cryo-sensitive strains monitored. Our results have significant implications to all users of this storage method and parallels have been drawn with the ongoing development in other fields and in particular, human cell therapy. Based on our practical experience we have made a series of generic recommendations for emergency, remedial and ongoing preventative actions.

灾难性制冷故障对低温储存样品生存能力的影响
低温保存是利用极低的温度保存结构完整的活细胞和组织,是生命科学研究和医学的关键基础技术。它用于确保关键生物资源的稳定性,包括病毒、细菌、原生生物、动物细胞培养物、植物、生殖材料和胚胎。确保这种稳定性的基础是确保低温储存温度的稳定性。在这里,我们报告了低温恒温箱中发生的制冷故障>600株蓝藻和真核微藻。采用了一种战略方法来评估生物多样性在潜在破坏性温度变化后立即和10年后在液相氮(~ - 196°C)中随后冷冻保存的横截面上的可行性。实验验证了这一事件,并监测了对耐低温和低温敏感菌株生存能力的影响。我们的研究结果对这种存储方法的所有用户都具有重要意义,并且与其他领域,特别是人类细胞治疗的持续发展有着相似之处。根据我们的实际经验,我们提出了一系列关于紧急、补救和持续预防行动的一般性建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Protist
Protist 生物-微生物学
CiteScore
3.60
自引率
4.00%
发文量
43
审稿时长
18.7 weeks
期刊介绍: Protist is the international forum for reporting substantial and novel findings in any area of research on protists. The criteria for acceptance of manuscripts are scientific excellence, significance, and interest for a broad readership. Suitable subject areas include: molecular, cell and developmental biology, biochemistry, systematics and phylogeny, and ecology of protists. Both autotrophic and heterotrophic protists as well as parasites are covered. The journal publishes original papers, short historical perspectives and includes a news and views section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信