A model incorporating clinicopathologic and liver imaging reporting and data system-based magnetic resonance imaging features to identify hepatocellular carcinoma in LR-M observations.
IF 1.4 4区 医学Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Xin-Xing Hu, Dong Bai, Zhen-Lei Wang, Yi Zhang, Jue Zhao, Mei-Ling Li, Jia Yang, Lei Zhang
{"title":"A model incorporating clinicopathologic and liver imaging reporting and data system-based magnetic resonance imaging features to identify hepatocellular carcinoma in LR-M observations.","authors":"Xin-Xing Hu, Dong Bai, Zhen-Lei Wang, Yi Zhang, Jue Zhao, Mei-Ling Li, Jia Yang, Lei Zhang","doi":"10.4274/dir.2023.232215","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the predictive value of a combination model of Liver Imaging Reporting and Data System (LI-RADS)-based magnetic resonance imaging (MRI) and clinicopathologic features to identify atypical hepatocellular carcinoma (HCC) in LI-RADS category M (LR-M) observations.</p><p><strong>Methods: </strong>A total of 105 patients with HCC based on surgery or biopsy who underwent preoperative MRI were retrospectively reviewed in the training group from hospital-1 between December 2016 and November 2020. The LI-RADS-based MRI features and clinicopathologic data were compared between LR-M HCC and non-HCC groups. Univariate and least absolute shrinkage and selection operator regression analyses were used to select the features. Binary logistic regression analysis was then conducted to estimate potential predictors of atypical HCC. A predictive nomogram was established based on the combination of MRI and clinicopathologic features and further validated using an independent external set of data from hospital-2.</p><p><strong>Results: </strong>Of 113 observations from 105 patients (mean age, 61 years; 77 men) in the training set, 47 (41.59%) were classified as LR-M HCC. Following multivariate analysis, aspartate aminotransferase >40 U/L [odds ratio (OR): 4.65], alpha-fetoprotein >20 ng/mL (OR: 13.04), surface retraction (OR: 0.16), enhancing capsule (OR: 5.24), blood products in mass (OR: 8.2), and iso/hypoenhancement on delayed phase (OR: 10.26) were found to be independently correlated with LR-M HCC. The corresponding area under the curve for a combined model-based nomogram was 0.95 in the training patients (n = 113) and 0.90 in the validation cohort (n = 53).</p><p><strong>Conclusion: </strong>The combined model incorporating clinicopathologic and MRI features demonstrated a satisfactory prediction result for LR-M HCC.</p>","PeriodicalId":11341,"journal":{"name":"Diagnostic and interventional radiology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10679560/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and interventional radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4274/dir.2023.232215","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To evaluate the predictive value of a combination model of Liver Imaging Reporting and Data System (LI-RADS)-based magnetic resonance imaging (MRI) and clinicopathologic features to identify atypical hepatocellular carcinoma (HCC) in LI-RADS category M (LR-M) observations.
Methods: A total of 105 patients with HCC based on surgery or biopsy who underwent preoperative MRI were retrospectively reviewed in the training group from hospital-1 between December 2016 and November 2020. The LI-RADS-based MRI features and clinicopathologic data were compared between LR-M HCC and non-HCC groups. Univariate and least absolute shrinkage and selection operator regression analyses were used to select the features. Binary logistic regression analysis was then conducted to estimate potential predictors of atypical HCC. A predictive nomogram was established based on the combination of MRI and clinicopathologic features and further validated using an independent external set of data from hospital-2.
Results: Of 113 observations from 105 patients (mean age, 61 years; 77 men) in the training set, 47 (41.59%) were classified as LR-M HCC. Following multivariate analysis, aspartate aminotransferase >40 U/L [odds ratio (OR): 4.65], alpha-fetoprotein >20 ng/mL (OR: 13.04), surface retraction (OR: 0.16), enhancing capsule (OR: 5.24), blood products in mass (OR: 8.2), and iso/hypoenhancement on delayed phase (OR: 10.26) were found to be independently correlated with LR-M HCC. The corresponding area under the curve for a combined model-based nomogram was 0.95 in the training patients (n = 113) and 0.90 in the validation cohort (n = 53).
Conclusion: The combined model incorporating clinicopathologic and MRI features demonstrated a satisfactory prediction result for LR-M HCC.
期刊介绍:
Diagnostic and Interventional Radiology (Diagn Interv Radiol) is the open access, online-only official publication of Turkish Society of Radiology. It is published bimonthly and the journal’s publication language is English.
The journal is a medium for original articles, reviews, pictorial essays, technical notes related to all fields of diagnostic and interventional radiology.