An intersectional framework for counterfactual fairness in risk prediction.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Solvejg Wastvedt, Jared D Huling, Julian Wolfson
{"title":"An intersectional framework for counterfactual fairness in risk prediction.","authors":"Solvejg Wastvedt, Jared D Huling, Julian Wolfson","doi":"10.1093/biostatistics/kxad021","DOIUrl":null,"url":null,"abstract":"<p><p>Along with the increasing availability of health data has come the rise of data-driven models to inform decision making and policy. These models have the potential to benefit both patients and health care providers but can also exacerbate health inequities. Existing \"algorithmic fairness\" methods for measuring and correcting model bias fall short of what is needed for health policy in two key ways. First, methods typically focus on a single grouping along which discrimination may occur rather than considering multiple, intersecting groups. Second, in clinical applications, risk prediction is typically used to guide treatment, creating distinct statistical issues that invalidate most existing techniques. We present novel unfairness metrics that address both challenges. We also develop a complete framework of estimation and inference tools for our metrics, including the unfairness value (\"u-value\"), used to determine the relative extremity of unfairness, and standard errors and confidence intervals employing an alternative to the standard bootstrap. We demonstrate application of our framework to a COVID-19 risk prediction model deployed in a major Midwestern health system.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxad021","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Along with the increasing availability of health data has come the rise of data-driven models to inform decision making and policy. These models have the potential to benefit both patients and health care providers but can also exacerbate health inequities. Existing "algorithmic fairness" methods for measuring and correcting model bias fall short of what is needed for health policy in two key ways. First, methods typically focus on a single grouping along which discrimination may occur rather than considering multiple, intersecting groups. Second, in clinical applications, risk prediction is typically used to guide treatment, creating distinct statistical issues that invalidate most existing techniques. We present novel unfairness metrics that address both challenges. We also develop a complete framework of estimation and inference tools for our metrics, including the unfairness value ("u-value"), used to determine the relative extremity of unfairness, and standard errors and confidence intervals employing an alternative to the standard bootstrap. We demonstrate application of our framework to a COVID-19 risk prediction model deployed in a major Midwestern health system.

风险预测中反事实公平性的交叉框架。
随着健康数据的日益普及,为决策和政策提供信息的数据驱动模型也随之兴起。这些模型有可能使患者和医疗服务提供者受益,但也可能加剧健康不平等。现有的衡量和纠正模型偏差的 "算法公平性 "方法在两个关键方面无法满足卫生政策的需要。首先,这些方法通常只关注可能出现歧视的单一分组,而不是考虑多个交叉分组。其次,在临床应用中,风险预测通常用于指导治疗,这就产生了明显的统计问题,使大多数现有技术失效。我们提出了新的不公平度量方法来应对这两个挑战。我们还为我们的指标开发了一个完整的估算和推理工具框架,包括不公平值("u 值")(用于确定不公平的相对极值),以及标准误差和置信区间(采用标准自举法的替代方法)。我们展示了我们的框架在中西部一家大型医疗系统部署的 COVID-19 风险预测模型中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信