Fabrication of bio-engineered chitosan nanoformulations to inhibition of bacterial infection and to improve therapeutic potential of intestinal microflora, intestinal morphology, and immune response in infection induced rat model.

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Xiao Wan, Liu Liu, Lu Ding, Zhiqiang Zhu
{"title":"Fabrication of bio-engineered chitosan nanoformulations to inhibition of bacterial infection and to improve therapeutic potential of intestinal microflora, intestinal morphology, and immune response in infection induced rat model.","authors":"Xiao Wan,&nbsp;Liu Liu,&nbsp;Lu Ding,&nbsp;Zhiqiang Zhu","doi":"10.1080/10717544.2022.2081381","DOIUrl":null,"url":null,"abstract":"<p><p>Overdosage of antibiotics used to prevent bacterial infections in the human and animal gastrointestinal tract would result in disturbing of intestinal barrier, significant misbalancing effects of intestinal microflora and persuading bacterial resistance. The main objective of the present investigation is to design and develop novel combinations of organic curcumin (Cur) and antimicrobial peptide (Amp) loaded chitosan nanoformulations (Cur/Amp@CS NPs) to improve significant effects on antibacterial action, immune response, intestine morphology, and intentional microflora. The antibacterial efficiency of the prepared nanoformulations was evaluated using <i>Escherichia coli</i> (<i>E. coli</i>) induced bacterial infections in GUT of Rat models. Further, we studied the cytocompatibility, inflammatory responses, α-diversity, intestinal morphology, and immune responses of treated nanoformulations in rat GUT models. The results indicated that Cur/Amp@CS NPs are greatly beneficial for intestinal microflora and could be a prodigious alternative of antibiotics.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"29 1","pages":"2002-2016"},"PeriodicalIF":6.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9255213/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2022.2081381","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Overdosage of antibiotics used to prevent bacterial infections in the human and animal gastrointestinal tract would result in disturbing of intestinal barrier, significant misbalancing effects of intestinal microflora and persuading bacterial resistance. The main objective of the present investigation is to design and develop novel combinations of organic curcumin (Cur) and antimicrobial peptide (Amp) loaded chitosan nanoformulations (Cur/Amp@CS NPs) to improve significant effects on antibacterial action, immune response, intestine morphology, and intentional microflora. The antibacterial efficiency of the prepared nanoformulations was evaluated using Escherichia coli (E. coli) induced bacterial infections in GUT of Rat models. Further, we studied the cytocompatibility, inflammatory responses, α-diversity, intestinal morphology, and immune responses of treated nanoformulations in rat GUT models. The results indicated that Cur/Amp@CS NPs are greatly beneficial for intestinal microflora and could be a prodigious alternative of antibiotics.

Abstract Image

Abstract Image

Abstract Image

制备生物工程壳聚糖纳米制剂抑制细菌感染,提高感染大鼠肠道菌群、肠道形态和免疫反应的治疗潜力。
用于预防人类和动物胃肠道细菌感染的抗生素过量使用,会导致肠道屏障被扰乱,肠道菌群出现明显的失衡效应,导致细菌产生耐药性。本研究的主要目的是设计和开发有机姜黄素(Cur)和抗菌肽(Amp)负载壳聚糖纳米制剂(Cur/Amp@CS NPs)的新组合,以改善其抗菌作用、免疫反应、肠道形态和微生物群的显著影响。采用大肠杆菌诱导的大鼠肠道细菌感染模型,评价纳米制剂的抗菌效果。此外,我们在大鼠肠道模型中研究了纳米制剂的细胞相容性、炎症反应、α-多样性、肠道形态和免疫反应。结果表明,Cur/Amp@CS NPs对肠道菌群有益,是一种很好的抗生素替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Delivery
Drug Delivery 医学-药学
CiteScore
11.80
自引率
5.00%
发文量
250
审稿时长
3.3 months
期刊介绍: Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信