Huiqi Y. Lu;Xiaorong Ding;Jane E. Hirst;Yang Yang;Jenny Yang;Lucy Mackillop;David A. Clifton
{"title":"Digital Health and Machine Learning Technologies for Blood Glucose Monitoring and Management of Gestational Diabetes","authors":"Huiqi Y. Lu;Xiaorong Ding;Jane E. Hirst;Yang Yang;Jenny Yang;Lucy Mackillop;David A. Clifton","doi":"10.1109/RBME.2023.3242261","DOIUrl":null,"url":null,"abstract":"Innovations in digital health and machine learning are changing the path of clinical health and care. People from different geographical locations and cultural backgrounds can benefit from the mobility of wearable devices and smartphones to monitor their health ubiquitously. This paper focuses on reviewing the digital health and machine learning technologies used in gestational diabetes – a subtype of diabetes that occurs during pregnancy. This paper reviews sensor technologies used in blood glucose monitoring devices, digital health innovations and machine learning models for gestational diabetes monitoring and management, in clinical and commercial settings, and discusses future directions. Despite one in six mothers having gestational diabetes, digital health applications were underdeveloped, especially the techniques that can be deployed in clinical practice. There is an urgent need to (1) develop clinically interpretable machine learning methods for patients with gestational diabetes, assisting health professionals with treatment, monitoring, and risk stratification before, during and after their pregnancies; (2) adapt and develop clinically-proven devices for patient self-management of health and well-being at home settings (“virtual ward” and virtual consultation), thereby improving clinical outcomes by facilitating timely intervention; and (3) ensure innovations are affordable and sustainable for all women with different socioeconomic backgrounds and clinical resources.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":17.2000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10039073/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 2
Abstract
Innovations in digital health and machine learning are changing the path of clinical health and care. People from different geographical locations and cultural backgrounds can benefit from the mobility of wearable devices and smartphones to monitor their health ubiquitously. This paper focuses on reviewing the digital health and machine learning technologies used in gestational diabetes – a subtype of diabetes that occurs during pregnancy. This paper reviews sensor technologies used in blood glucose monitoring devices, digital health innovations and machine learning models for gestational diabetes monitoring and management, in clinical and commercial settings, and discusses future directions. Despite one in six mothers having gestational diabetes, digital health applications were underdeveloped, especially the techniques that can be deployed in clinical practice. There is an urgent need to (1) develop clinically interpretable machine learning methods for patients with gestational diabetes, assisting health professionals with treatment, monitoring, and risk stratification before, during and after their pregnancies; (2) adapt and develop clinically-proven devices for patient self-management of health and well-being at home settings (“virtual ward” and virtual consultation), thereby improving clinical outcomes by facilitating timely intervention; and (3) ensure innovations are affordable and sustainable for all women with different socioeconomic backgrounds and clinical resources.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.