A low-profile electromechanical packaging system for soft-to-flexible bioelectronic interfaces.

IF 6.6 3区 医学 Q1 ENGINEERING, BIOMEDICAL
Florian Fallegger, Alix Trouillet, Florent-Valéry Coen, Giuseppe Schiavone, Stéphanie P Lacour
{"title":"A low-profile electromechanical packaging system for soft-to-flexible bioelectronic interfaces.","authors":"Florian Fallegger,&nbsp;Alix Trouillet,&nbsp;Florent-Valéry Coen,&nbsp;Giuseppe Schiavone,&nbsp;Stéphanie P Lacour","doi":"10.1063/5.0152509","DOIUrl":null,"url":null,"abstract":"<p><p>Interfacing the human body with the next generation of electronics requires technological advancement in designing and producing bioelectronic circuits. These circuits must integrate electrical functionality while simultaneously addressing limitations in mechanical compliance and dynamics, biocompatibility, and consistent, scalable manufacturing. The combination of mechanically disparate materials ranging from elastomers to inorganic crystalline semiconductors calls for modular designs with reliable and scalable electromechanical connectors. Here, we report on a novel interconnection solution for soft-to-flexible bioelectronic interfaces using a patterned and machined flexible printed circuit board, which we term FlexComb, interfaced with soft transducing systems. Using a simple assembly process, arrays of protruding \"fingers\" bearing individual electrical terminals are laser-machined on a standard flexible printed circuit board to create a comb-like structure, namely, the FlexComb. A matching pattern is also machined in the soft system to host and interlock electromechanically the FlexComb connections via a soft electrically conducting composite. We examine the electrical and electromechanical properties of the interconnection and demonstrate the versatility and scalability of the method through various customized submillimetric designs. In a pilot <i>in vivo</i> study, we validate the stability and compatibility of the FlexComb technology in a subdural electrocorticography system implanted for 6 months on the auditory cortex of a minipig. The FlexComb provides a reliable and simple technique to bond and connect soft transducing systems with flexible or rigid electronic boards, which should find many implementations in soft robotics and wearable and implantable bioelectronics.</p>","PeriodicalId":46288,"journal":{"name":"APL Bioengineering","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439817/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0152509","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Interfacing the human body with the next generation of electronics requires technological advancement in designing and producing bioelectronic circuits. These circuits must integrate electrical functionality while simultaneously addressing limitations in mechanical compliance and dynamics, biocompatibility, and consistent, scalable manufacturing. The combination of mechanically disparate materials ranging from elastomers to inorganic crystalline semiconductors calls for modular designs with reliable and scalable electromechanical connectors. Here, we report on a novel interconnection solution for soft-to-flexible bioelectronic interfaces using a patterned and machined flexible printed circuit board, which we term FlexComb, interfaced with soft transducing systems. Using a simple assembly process, arrays of protruding "fingers" bearing individual electrical terminals are laser-machined on a standard flexible printed circuit board to create a comb-like structure, namely, the FlexComb. A matching pattern is also machined in the soft system to host and interlock electromechanically the FlexComb connections via a soft electrically conducting composite. We examine the electrical and electromechanical properties of the interconnection and demonstrate the versatility and scalability of the method through various customized submillimetric designs. In a pilot in vivo study, we validate the stability and compatibility of the FlexComb technology in a subdural electrocorticography system implanted for 6 months on the auditory cortex of a minipig. The FlexComb provides a reliable and simple technique to bond and connect soft transducing systems with flexible or rigid electronic boards, which should find many implementations in soft robotics and wearable and implantable bioelectronics.

Abstract Image

Abstract Image

Abstract Image

一种低姿态的机电包装系统,用于软到柔性的生物电子接口。
将人体与下一代电子产品相连接需要在设计和生产生物电子电路方面取得技术进步。这些电路必须集成电气功能,同时解决机械顺应性和动力学、生物相容性以及一致、可扩展制造方面的限制。从弹性体到无机晶体半导体等机械不同材料的组合需要具有可靠和可扩展的机电连接器的模块化设计。在这里,我们报告了一种用于软到柔性生物电子接口的新型互连解决方案,该解决方案使用图像化和机加工的柔性印刷电路板,我们称之为FlexComb,与软传感系统接口。使用一个简单的组装过程,在一个标准的柔性印刷电路板上用激光加工出带有单个电气端子的突出“手指”阵列,以创建一个梳状结构,即FlexComb。在软系统中也加工了匹配的图案,通过软导电复合材料来承载和连锁FlexComb连接。我们研究了互连的电气和机电特性,并通过各种定制的亚毫米设计展示了该方法的多功能性和可扩展性。在一项试点体内研究中,我们将FlexComb技术植入迷你猪的听觉皮层6个月的硬脑膜下皮质电成像系统,验证其稳定性和兼容性。FlexComb提供了一种可靠而简单的技术,可以将软换能器系统与柔性或刚性电子板结合和连接,这在软机器人和可穿戴和植入式生物电子学中应该有很多应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
APL Bioengineering
APL Bioengineering ENGINEERING, BIOMEDICAL-
CiteScore
9.30
自引率
6.70%
发文量
39
审稿时长
19 weeks
期刊介绍: APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities. APL Bioengineering publishes original research articles, reviews, and perspectives. Topical coverage includes: -Biofabrication and Bioprinting -Biomedical Materials, Sensors, and Imaging -Engineered Living Systems -Cell and Tissue Engineering -Regenerative Medicine -Molecular, Cell, and Tissue Biomechanics -Systems Biology and Computational Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信