Lap Jack Wong, Bernice Woon Li Lee, Yi Jing Sng, Luting Poh, Vismitha Rajeev, Sharmelee Selvaraji, Grant R Drummond, Christopher G Sobey, Thiruma V Arumugam, David Y Fann
{"title":"Inflammasome Activation Mediates Apoptotic and Pyroptotic Death in Astrocytes Under Ischemic Conditions.","authors":"Lap Jack Wong, Bernice Woon Li Lee, Yi Jing Sng, Luting Poh, Vismitha Rajeev, Sharmelee Selvaraji, Grant R Drummond, Christopher G Sobey, Thiruma V Arumugam, David Y Fann","doi":"10.1007/s12017-023-08753-2","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammation is a hallmark mechanism of ischemic stroke-induced brain injury. Recent studies have shown that an intracellular multimeric protein complex known as an inflammasome is a key factor for inducing an inflammatory response, and apoptotic and pyroptotic cell death in ischemic stroke. Inflammasome assembly leads to the activation of pro-inflammatory caspases, and the maturation and secretion of pro-inflammatory cytokines IL-1β and IL-18. While the role of inflammasomes in ischemic stroke-induced neuronal death, and microglial activation and cell death have been established, little is known about the role of inflammasomes in astrocytes under ischemic conditions. In this study, we investigated the expression and activation of inflammasome components in protoplasmic and fibrous astrocytes under ischemic conditions. We found that both protoplasmic and fibrous astrocytes expressed a differential increase in inflammasome protein components, and that their activation promoted maturation of IL-1β and IL-18, and secretion of IL-1β, as well as initiating apoptotic and pyroptotic cell death. Pharmacological inhibition of caspase-1 decreased expression of cleaved caspase-1 and production of mature IL-1β, and protected against inflammasome-mediated apoptotic and pyroptotic cell death. Overall, this study provides novel insights into the role of inflammasome signaling in astrocytes under ischemic conditions.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":" ","pages":"533-544"},"PeriodicalIF":3.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroMolecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-023-08753-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Inflammation is a hallmark mechanism of ischemic stroke-induced brain injury. Recent studies have shown that an intracellular multimeric protein complex known as an inflammasome is a key factor for inducing an inflammatory response, and apoptotic and pyroptotic cell death in ischemic stroke. Inflammasome assembly leads to the activation of pro-inflammatory caspases, and the maturation and secretion of pro-inflammatory cytokines IL-1β and IL-18. While the role of inflammasomes in ischemic stroke-induced neuronal death, and microglial activation and cell death have been established, little is known about the role of inflammasomes in astrocytes under ischemic conditions. In this study, we investigated the expression and activation of inflammasome components in protoplasmic and fibrous astrocytes under ischemic conditions. We found that both protoplasmic and fibrous astrocytes expressed a differential increase in inflammasome protein components, and that their activation promoted maturation of IL-1β and IL-18, and secretion of IL-1β, as well as initiating apoptotic and pyroptotic cell death. Pharmacological inhibition of caspase-1 decreased expression of cleaved caspase-1 and production of mature IL-1β, and protected against inflammasome-mediated apoptotic and pyroptotic cell death. Overall, this study provides novel insights into the role of inflammasome signaling in astrocytes under ischemic conditions.
期刊介绍:
NeuroMolecular Medicine publishes cutting-edge original research articles and critical reviews on the molecular and biochemical basis of neurological disorders. Studies range from genetic analyses of human populations to animal and cell culture models of neurological disorders. Emerging findings concerning the identification of genetic aberrancies and their pathogenic mechanisms at the molecular and cellular levels will be included. Also covered are experimental analyses of molecular cascades involved in the development and adult plasticity of the nervous system, in neurological dysfunction, and in neuronal degeneration and repair. NeuroMolecular Medicine encompasses basic research in the fields of molecular genetics, signal transduction, plasticity, and cell death. The information published in NEMM will provide a window into the future of molecular medicine for the nervous system.