Dethiobiotin uptake and utilization by bacteria possessing bioYB operon

IF 2.5 4区 生物学 Q3 MICROBIOLOGY
Tomoki Ikeda , Tetsuhiro Ogawa , Toshihiro Aono
{"title":"Dethiobiotin uptake and utilization by bacteria possessing bioYB operon","authors":"Tomoki Ikeda ,&nbsp;Tetsuhiro Ogawa ,&nbsp;Toshihiro Aono","doi":"10.1016/j.resmic.2023.104131","DOIUrl":null,"url":null,"abstract":"<div><p>Biotin is an essential vitamin for all organisms. Some bacteria cannot synthesize biotin and live by acquiring biotin from the environment. Bacterial biotin transporters (BioY) are classified into three mechanistic types. The first forms the BioMNY complex with ATPase (BioM) and transmembrane protein (BioN). The second relies on a promiscuous energy coupling module. The third functions independently. One-third of <em>bioY</em> genes spread in bacteria cluster with <em>bioM</em> and <em>bioN</em> on the genomes, and the rest does not. Interestingly, some bacteria have the <em>bioY</em> gene clustering with <em>bioB</em> gene, which encodes biotin synthase, an enzyme that converts dethiobiotin to biotin, on their genome. This <em>bioY-bioB</em> cluster is observed even though these bacteria cannot synthesize biotin. <span><em>Azorhizobium caulinodans</em></span><span> ORS571, a rhizobium of tropical legume </span><span><em>Sesbania</em><em> rostrata</em></span>, is one of such bacteria. In this study using this bacterium, we demonstrated that the BioY linked to BioB could transport not only biotin but also dethiobiotin, and the combination of BioY and BioB contributed to the growth of <em>A. caulinodans</em> ORS571 in a biotin-deficient but dethiobiotin-sufficient environment. We propose that such environment universally exists in the natural world, and the identification of such environment will be a new subject in the field of microbial ecology.</p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":"174 8","pages":"Article 104131"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923250823001067","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biotin is an essential vitamin for all organisms. Some bacteria cannot synthesize biotin and live by acquiring biotin from the environment. Bacterial biotin transporters (BioY) are classified into three mechanistic types. The first forms the BioMNY complex with ATPase (BioM) and transmembrane protein (BioN). The second relies on a promiscuous energy coupling module. The third functions independently. One-third of bioY genes spread in bacteria cluster with bioM and bioN on the genomes, and the rest does not. Interestingly, some bacteria have the bioY gene clustering with bioB gene, which encodes biotin synthase, an enzyme that converts dethiobiotin to biotin, on their genome. This bioY-bioB cluster is observed even though these bacteria cannot synthesize biotin. Azorhizobium caulinodans ORS571, a rhizobium of tropical legume Sesbania rostrata, is one of such bacteria. In this study using this bacterium, we demonstrated that the BioY linked to BioB could transport not only biotin but also dethiobiotin, and the combination of BioY and BioB contributed to the growth of A. caulinodans ORS571 in a biotin-deficient but dethiobiotin-sufficient environment. We propose that such environment universally exists in the natural world, and the identification of such environment will be a new subject in the field of microbial ecology.

具有生物YB操纵子的细菌对脱硫生物素的吸收和利用。
生物素是所有生物体必需的维生素。一些细菌不能合成生物素,并通过从环境中获得生物素来生存。细菌生物素转运蛋白(BioY)可分为三种机制类型。第一种是与ATP酶(BioM)和跨膜蛋白(BioN)形成BioMNY复合物。第二个依赖于混杂的能量耦合模块。第三个独立运行。三分之一的bioY基因在细菌群中传播,基因组上有bioM和bioN,其余的则没有。有趣的是,一些细菌的基因组中有bioY基因与bioB基因簇合,后者编码生物素合成酶,一种将脱硫生物素转化为生物素的酶。即使这些细菌不能合成生物素,也能观察到这种bioY-bioB簇。热带豆科花叶豆的根瘤菌茎生氮根瘤菌ORS571就是这样的细菌之一。在这项使用该细菌的研究中,我们证明了与BioB连接的BioY不仅可以运输生物素,还可以运输脱硫生物素,并且BioY和BioB的组合有助于A.cauinodans ORS571在生物素缺乏但脱硫生物素充足的环境中的生长。我们提出,这种环境在自然界中普遍存在,对这种环境的识别将是微生物生态学领域的一个新课题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research in microbiology
Research in microbiology 生物-微生物学
CiteScore
4.10
自引率
3.80%
发文量
54
审稿时长
16 days
期刊介绍: Research in Microbiology is the direct descendant of the original Pasteur periodical entitled Annales de l''Institut Pasteur, created in 1887 by Emile Duclaux under the patronage of Louis Pasteur. The Editorial Committee included Chamberland, Grancher, Nocard, Roux and Straus, and the first issue began with Louis Pasteur''s "Lettre sur la Rage" which clearly defines the spirit of the journal:"You have informed me, my dear Duclaux, that you intend to start a monthly collection of articles entitled "Annales de l''Institut Pasteur". You will be rendering a service that will be appreciated by the ever increasing number of young scientists who are attracted to microbiological studies. In your Annales, our laboratory research will of course occupy a central position, but the work from outside groups that you intend to publish will be a source of competitive stimulation for all of us."That first volume included 53 articles as well as critical reviews and book reviews. From that time on, the Annales appeared regularly every month, without interruption, even during the two world wars. Although the journal has undergone many changes over the past 100 years (in the title, the format, the language) reflecting the evolution in scientific publishing, it has consistently maintained the Pasteur tradition by publishing original reports on all aspects of microbiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信