The extreme points of some convex sets in the theory of majorization

Anthony Horsley, Andrzej J. Wrobel
{"title":"The extreme points of some convex sets in the theory of majorization","authors":"Anthony Horsley,&nbsp;Andrzej J. Wrobel","doi":"10.1016/S1385-7258(87)80037-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let (<em>A</em>, %plane1D;49C;, μ) be a finite measure space, and let <em>Ω</em><sub>µ, w</sub><sup>+</sup><em>f</em> denote the set of all nonnegative real-valued %plane1D;49C;-measurable functions on <em>A</em> weaklymajorized by a nonnegative function <em>f</em>, in the sense of Hardly, Littlewood and Pólya. For a nonatomic µ, the extreme points of<em>Ω</em><sub>µ, w</sub> <sup>+</sup><em>f</em> are shown to be the nonnegativefunctions obtained by taking a fraction (1−θ) of the largest values of and arranging them in any way on any subset of <em>A</em> of measure(1−θ), with values elsewhere set equal to zero. Topological properties of these extreme points are given.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"90 2","pages":"Pages 171-176"},"PeriodicalIF":0.0000,"publicationDate":"1987-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80037-9","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725887800379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Let (A, %plane1D;49C;, μ) be a finite measure space, and let Ωµ, w+f denote the set of all nonnegative real-valued %plane1D;49C;-measurable functions on A weaklymajorized by a nonnegative function f, in the sense of Hardly, Littlewood and Pólya. For a nonatomic µ, the extreme points ofΩµ, w +f are shown to be the nonnegativefunctions obtained by taking a fraction (1−θ) of the largest values of and arranging them in any way on any subset of A of measure(1−θ), with values elsewhere set equal to zero. Topological properties of these extreme points are given.

多数化理论中若干凸集的极值点
设(A, %plane1D;49C;, μ)是一个有限测度空间,设Ωµ,w+f表示A上所有非负实值%plane1D;49C;-可测函数的集合,这些函数被一个非负函数f弱多数化,在hard, Littlewood和Pólya意义上。对于非原子的μ,极值点ofΩ μ, w +f被证明是取的最大值的分数(1−θ)并在测度(1−θ)的a的任意子集上以任意方式排列得到的非负函数,其他地方的值设为零。给出了这些极值点的拓扑性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信