{"title":"Incorporation of Saqez essential oil into polyvinyl alcohol/chitosan bilayer hydrogel as a potent wound dressing material","authors":"Ali Rezaei, Hamide Ehtesabi, Somaye Ebrahimi","doi":"10.1016/j.ijbiomac.2022.12.036","DOIUrl":null,"url":null,"abstract":"<div><p><span>Nowadays, many studies are conducted on multilayer hydrogels for wound dressing. On the other hand, considering the emergence of bacterial resistance<span> to common antibiotics, studies on the use of natural essential oils and their derivatives that have antibacterial and antioxidant activity can be useful. Herein, a novel </span></span>bilayer<span> hydrogel developed from polyvinyl alcohol and chitosan with the incorporation of Saqez essential oil (SEO) was synthesized. The results showed a gel-type structure with specific compression and flexibility, while the microscopic images confirmed the formation of a bilayer hydrogel. Further, the data showed that increasing the concentration of SEO reduces the swelling and water vapor permeability and increases the water retention and hydrophobicity<span> of the hydrogel surface. The effects of the combination of SEO in the bilayer hydrogel led to a strong antioxidant property and increased antimicrobial activity. Also, the in vitro results demonstrated that the bilayer hydrogels are biocompatible, non-toxic, and blood compatible. Finally, the results of the in vivo tests showed that these bilayer hydrogels had good homeostatic efficiency. Overall, the obtained results indicate that these bilayer hydrogels are promising candidates for wound dressing.</span></span></p></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"226 ","pages":"Pages 383-396"},"PeriodicalIF":7.7000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813022029348","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 8
Abstract
Nowadays, many studies are conducted on multilayer hydrogels for wound dressing. On the other hand, considering the emergence of bacterial resistance to common antibiotics, studies on the use of natural essential oils and their derivatives that have antibacterial and antioxidant activity can be useful. Herein, a novel bilayer hydrogel developed from polyvinyl alcohol and chitosan with the incorporation of Saqez essential oil (SEO) was synthesized. The results showed a gel-type structure with specific compression and flexibility, while the microscopic images confirmed the formation of a bilayer hydrogel. Further, the data showed that increasing the concentration of SEO reduces the swelling and water vapor permeability and increases the water retention and hydrophobicity of the hydrogel surface. The effects of the combination of SEO in the bilayer hydrogel led to a strong antioxidant property and increased antimicrobial activity. Also, the in vitro results demonstrated that the bilayer hydrogels are biocompatible, non-toxic, and blood compatible. Finally, the results of the in vivo tests showed that these bilayer hydrogels had good homeostatic efficiency. Overall, the obtained results indicate that these bilayer hydrogels are promising candidates for wound dressing.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.