{"title":"Embedding-based link predictions to explore latent comorbidity of chronic diseases.","authors":"Haohui Lu, Shahadat Uddin","doi":"10.1007/s13755-022-00206-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Comorbidity is a term used to describe when a patient simultaneously has more than one chronic disease. Comorbidity is a significant health issue that affects people worldwide. This study aims to use machine learning and graph theory to predict the comorbidity of chronic diseases.</p><p><strong>Methods: </strong>A patient-disease bipartite graph is constructed based on the administrative claim data. The bipartite graph projection approach was used to create the comorbidity network. For the link prediction task, three graph machine learning embedding-based models (node2vec, graph neural networks and hand-crafted approach) with different variants were used on the comorbidity network to compare their performance. This study also considered three commonly used similarity-based link prediction approaches (Jaccard coefficient, Adamic-Adar index and Resource allocation index) for performance comparison.</p><p><strong>Results: </strong>The results showed that the embedding-based hand-crafted features technique achieved outstanding performance compared with the remaining similarity-based and embedding-based models. Especially, the hand-crafted technique with the extreme gradient boosting classifier achieved the highest accuracy (91.67%), followed by the same technique with the Logistic regression classifier (90.26%). For this shallow embedding method, the Jaccard coefficient and the degree centrality of the original chronic disease were the most important features for comorbidity prediction.</p><p><strong>Conclusion: </strong>The proposed framework can be used to predict the comorbidity of chronic disease at an early stage of hospital admission. Thus, the prediction outcome could be valuable for medical practice, giving healthcare providers more control over their services and lowering expenses.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"2"},"PeriodicalIF":4.7000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9803807/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-022-00206-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Comorbidity is a term used to describe when a patient simultaneously has more than one chronic disease. Comorbidity is a significant health issue that affects people worldwide. This study aims to use machine learning and graph theory to predict the comorbidity of chronic diseases.
Methods: A patient-disease bipartite graph is constructed based on the administrative claim data. The bipartite graph projection approach was used to create the comorbidity network. For the link prediction task, three graph machine learning embedding-based models (node2vec, graph neural networks and hand-crafted approach) with different variants were used on the comorbidity network to compare their performance. This study also considered three commonly used similarity-based link prediction approaches (Jaccard coefficient, Adamic-Adar index and Resource allocation index) for performance comparison.
Results: The results showed that the embedding-based hand-crafted features technique achieved outstanding performance compared with the remaining similarity-based and embedding-based models. Especially, the hand-crafted technique with the extreme gradient boosting classifier achieved the highest accuracy (91.67%), followed by the same technique with the Logistic regression classifier (90.26%). For this shallow embedding method, the Jaccard coefficient and the degree centrality of the original chronic disease were the most important features for comorbidity prediction.
Conclusion: The proposed framework can be used to predict the comorbidity of chronic disease at an early stage of hospital admission. Thus, the prediction outcome could be valuable for medical practice, giving healthcare providers more control over their services and lowering expenses.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.