Plant Virus Adaptation to New Hosts: A Multi-scale Approach.

3区 医学 Q2 Medicine
Santiago F Elena, Fernando García-Arenal
{"title":"Plant Virus Adaptation to New Hosts: A Multi-scale Approach.","authors":"Santiago F Elena,&nbsp;Fernando García-Arenal","doi":"10.1007/978-3-031-15640-3_5","DOIUrl":null,"url":null,"abstract":"<p><p>Viruses are studied at each level of biological complexity: from within-cells to ecosystems. The same basic evolutionary forces and principles operate at each level: mutation and recombination, selection, genetic drift, migration, and adaptive trade-offs. Great efforts have been put into understanding each level in great detail, hoping to predict the dynamics of viral population, prevent virus emergence, and manage their spread and virulence. Unfortunately, we are still far from this. To achieve these ambitious goals, we advocate for an integrative perspective of virus evolution. Focusing in plant viruses, we illustrate the pervasiveness of the above-mentioned principles. Beginning at the within-cell level, we describe replication modes, infection bottlenecks, and cellular contagion rates. Next, we move up to the colonization of distal tissues, discussing the fundamental role of random events. Then, we jump beyond the individual host and discuss the link between transmission mode and virulence. Finally, at the community level, we discuss properties of virus-plant infection networks. To close this review we propose the multilayer network theory, in which elements at different layers are connected and submit to their own dynamics that feed across layers, resulting in new emerging properties, as a way to integrate information from the different levels.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in microbiology and immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/978-3-031-15640-3_5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 3

Abstract

Viruses are studied at each level of biological complexity: from within-cells to ecosystems. The same basic evolutionary forces and principles operate at each level: mutation and recombination, selection, genetic drift, migration, and adaptive trade-offs. Great efforts have been put into understanding each level in great detail, hoping to predict the dynamics of viral population, prevent virus emergence, and manage their spread and virulence. Unfortunately, we are still far from this. To achieve these ambitious goals, we advocate for an integrative perspective of virus evolution. Focusing in plant viruses, we illustrate the pervasiveness of the above-mentioned principles. Beginning at the within-cell level, we describe replication modes, infection bottlenecks, and cellular contagion rates. Next, we move up to the colonization of distal tissues, discussing the fundamental role of random events. Then, we jump beyond the individual host and discuss the link between transmission mode and virulence. Finally, at the community level, we discuss properties of virus-plant infection networks. To close this review we propose the multilayer network theory, in which elements at different layers are connected and submit to their own dynamics that feed across layers, resulting in new emerging properties, as a way to integrate information from the different levels.

植物病毒对新寄主的适应:多尺度研究
从细胞内到生态系统,在生物复杂性的每个层面对病毒进行研究。相同的基本进化力量和原则在每个层面上都起作用:突变和重组、选择、遗传漂变、迁移和适应性权衡。人们已经付出了巨大的努力,以非常详细地了解每个层次,希望预测病毒种群的动态,防止病毒的出现,并控制它们的传播和毒性。不幸的是,我们离这一步还很遥远。为了实现这些雄心勃勃的目标,我们提倡从综合的角度看待病毒进化。我们以植物病毒为重点,说明上述原则的普遍性。从细胞内水平开始,我们描述了复制模式、感染瓶颈和细胞传染率。接下来,我们将讨论远端组织的定植,讨论随机事件的基本作用。然后,我们跳过个体宿主,讨论传播模式和毒力之间的联系。最后,在群落水平上,我们讨论了病毒-植物感染网络的性质。为了结束这一回顾,我们提出了多层网络理论,其中不同层的元素相互连接,并服从于它们自己的动态,这些动态会跨层馈电,从而产生新的属性,作为整合来自不同层的信息的一种方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The review series Current Topics in Microbiology and Immunology provides a synthesis of the latest research findings in the areas of molecular immunology, bacteriology and virology. Each timely volume contains a wealth of information on the featured subject. This review series is designed to provide access to up-to-date, often previously unpublished information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信